Robust Spectral Clustering for Noisy Data Modeling Sparse Corruptions Improves Latent Embeddings

被引:55
作者
Bojchevski, Aleksandar [1 ]
Matkovic, Yves [1 ]
Guennemann, Stephan [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
来源
KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING | 2017年
关键词
D O I
10.1145/3097983.3098156
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral clustering is one of the most prominent clustering approaches. However, it is highly sensitive to noisy input data. In this work, we propose a robust spectral clustering technique able to handle such scenarios. To achieve this goal, we propose a sparse and latent decomposition of the similarity graph used in spectral clustering. In our model, we jointly learn the spectral embedding as well as the corrupted data thus, enhancing the clustering performance overall. We propose algorithmic solutions to all three established variants of spectral clustering, each showing linear complexity in the number of edges. Our experimental analysis confirms the significant potential of our approach for robust spectral clustering. Supplementary material is available at www.kdd.in.tum.de/RSC.
引用
收藏
页码:737 / 746
页数:10
相关论文
共 25 条
[1]  
Aggarwal CC, 2014, CH CRC DATA MIN KNOW, P1
[2]  
[Anonymous], 2005, ROBUST REGRESSION OU
[3]  
Bach FR, 2004, ADV NEUR IN, V16, P305
[4]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[5]   Robust path-based spectral clustering [J].
Chang, Hong ;
Yeung, Dit-Yan .
PATTERN RECOGNITION, 2008, 41 (01) :191-203
[6]  
Condon A, 2001, RANDOM STRUCT ALGOR, V18, P116, DOI 10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO
[7]  
2-2
[8]   ROTATION OF EIGENVECTORS BY A PERTURBATION .3. [J].
DAVIS, C ;
KAHAN, WM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :1-&
[9]  
Fanti C, 2004, ADV NEUR IN, V16, P1603
[10]   Spectral Subspace Clustering for Graphs with Feature Vectors [J].
Guennemann, Stephan ;
Faerber, Ines ;
Raubach, Sebastian ;
Seidl, Thomas .
2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, :231-240