On the q-tensor square of a group

被引:11
作者
Bueno, Ticianne P. [1 ]
Rocco, Norai R. [2 ]
机构
[1] Univ Fed Goias, Dept Matemat, BR-74001970 Goiania, Go, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
NON-ABELIAN TENSOR; SOLVABLE-GROUPS; PRODUCTS;
D O I
10.1515/JGT.2010.084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the non-abelian tensor square modulo q of a group, where q is a non-negative integer, via an operator v(q) in the class of groups. Structural properties and finiteness conditions of v(q)(G) are investigated. We compute the non-abelian tensor square modulo q of cyclic groups and develop a theory for computing v(q)(G) and some of its relevant sections for polycyclic groups G. This extends the existing theory from the case q = 0 to all non-negative integers q. Additionally, a table of examples is produced with the help of the GAP system.
引用
收藏
页码:785 / 805
页数:21
相关论文
共 15 条
  • [1] Some structural results on the non-abelian tensor square of groups
    Blyth, Russell D.
    Fumagalli, Francesco
    Morigi, Marta
    [J]. JOURNAL OF GROUP THEORY, 2010, 13 (01) : 83 - 94
  • [2] Computing the nonabelian tensor squares of polycyclic groups
    Blyth, Russell D.
    Morse, Robert Fitzgerald
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (08) : 2139 - 2148
  • [3] VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES
    BROWN, R
    LODAY, JL
    [J]. TOPOLOGY, 1987, 26 (03) : 311 - 335
  • [4] Brown R., 1990, PUBL MAT, V34, P291
  • [5] NON-ABELIAN TENSOR AND EXTERIOR PRODUCTS MODULO-Q AND UNIVERSAL Q-CENTRAL RELATIVE EXTENSION
    CONDUCHE, D
    RODRIGUEZFERNANDEZ, C
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 78 (02) : 139 - 160
  • [6] Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group
    Eick, Bettina
    Nickel, Werner
    [J]. JOURNAL OF ALGEBRA, 2008, 320 (02) : 927 - 944
  • [7] Ellis G., 1995, Proc. R. Ir. Acad. A: Math. Phys. Sci., V95, P137
  • [8] TENSOR-PRODUCTS AND Q-CROSSED MODULES
    ELLIS, GJ
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 243 - 258
  • [9] THE NON-ABELIAN TENSOR PRODUCT OF GROUPS AND RELATED CONSTRUCTIONS
    GILBERT, ND
    HIGGINS, PJ
    [J]. GLASGOW MATHEMATICAL JOURNAL, 1989, 31 : 17 - 29
  • [10] MCDERMOTT A, 1998, THESIS NAT U IRELAND