Integral fluctuation theorem for the housekeeping heat

被引:153
作者
Speck, T [1 ]
Seifert, U [1 ]
机构
[1] Univ Stuttgart, Inst Theoret Phys 2, D-70550 Stuttgart, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 34期
关键词
D O I
10.1088/0305-4470/38/34/L03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The housekeeping heat Q(hk) is the dissipated heat necessary to maintain the violation of detailed balance in nonequilibrium steady states. By analysing the evolution of its probability distribution, we prove an integral fluctuation theorem (exp[-beta Q(hk)]) = 1 valid for arbitrary-driven transitions between steady states. We discuss Gaussian limiting cases and the difference between the new theorem and both the Hatano-Sasa and the Jarzynski relation.
引用
收藏
页码:L581 / L588
页数:8
相关论文
共 22 条
[1]   Path-ensemble averages in systems driven far from equilibrium [J].
Crooks, GE .
PHYSICAL REVIEW E, 2000, 61 (03) :2361-2366
[2]   EQUILIBRIUM MICROSTATES WHICH GENERATE 2ND LAW VIOLATING STEADY-STATES [J].
EVANS, DJ ;
SEARLES, DJ .
PHYSICAL REVIEW E, 1994, 50 (02) :1645-1648
[3]   DYNAMICAL ENSEMBLES IN NONEQUILIBRIUM STATISTICAL-MECHANICS [J].
GALLAVOTTI, G ;
COHEN, EGD .
PHYSICAL REVIEW LETTERS, 1995, 74 (14) :2694-2697
[4]   Fluctuation theorem for nonequilibrium reactions [J].
Gaspard, P .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (19) :8898-8905
[5]   Steady-state thermodynamics of Langevin systems [J].
Hatano, T ;
Sasa, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3463-3466
[6]   Work distribution and path integrals in general mean-field systems [J].
Imparato, A ;
Peliti, L .
EUROPHYSICS LETTERS, 2005, 70 (06) :740-746
[7]   Nonequilibrium equality for free energy differences [J].
Jarzynski, C .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2690-2693
[8]   Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach [J].
Jarzynski, C .
PHYSICAL REVIEW E, 1997, 56 (05) :5018-5035
[9]   Fluctuation theorem for stochastic dynamics [J].
Kurchan, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16) :3719-3729
[10]   A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics [J].
Lebowitz, JL ;
Spohn, H .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :333-365