Selective absorber and emitter boost water evaporation and condensation toward water collection

被引:45
作者
Chen, Meijie [1 ]
Li, Shuang [1 ]
Pang, Dan [1 ]
Yan, Hongjie [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiative cooling; Solar heating; Fresh water; Contact angle; SOLAR; PURIFICATION; GENERATION;
D O I
10.1016/j.mtener.2022.101072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar evaporation has attracted much attention for water collection. However, previous studies on the traditional interface evaporation pay little attention to the selective spectral properties of solar absorbers, leading to mid-infrared radiative heat loss. Besides, during the vapor condensation, the scatter and absorption of the droplets reduce the incident solar intensity on the evaporation interface below. In this work, a freshwater collection strategy combining solar selective absorber and daytime passive radiative cooling techniques is proposed. The solar selective absorber achieves a high solar thermal conversion efficiency (eta(evap) = 0.894 at 1 sun) to enhance solar evaporation. The passive daytime radiative cooling coating achieves a high solar reflectance (R) over bar (solar) = 0.927 and thermal emittance (epsilon) over bar LWIR = 0.929 in the atmospheric transmission window to cool the condensation surface and enhance vapor condensation. In addition, the contact angle is optimized to be 79 degrees by manipulating the hydrophilicity of the condensation surface to ensure the droplet nucleation and shedding. Indoor experiments show that the water collection rate reaches 0.43 kg m(-2) h(-1). This work provides a promising water collection strategy through solar heating and radiative cooling.
引用
收藏
页数:8
相关论文
共 28 条
[1]   Emerging opportunities for nanotechnology to enhance water security [J].
Alvarez, Pedro J. J. ;
Chan, Candace K. ;
Elimelech, Menachem ;
Halas, Naomi J. ;
Villagan, Dino .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :634-641
[2]   Cellulose Nanomaterials in Interfacial Evaporators for Desalination: A "Natural" Choice [J].
Cao, Sisi ;
Rathi, Priya ;
Wu, Xuanhao ;
Ghim, Deoukchen ;
Jun, Young-Shin ;
Singamaneni, Srikanth .
ADVANCED MATERIALS, 2021, 33 (28)
[3]   Dual functional asymmetric plasmonic structures for solar water purification and pollution detection [J].
Chen, Chuanlu ;
Zhou, Lin ;
Yu, Jianyu ;
Wang, Yuxi ;
Nie, Shuming ;
Zhu, Shining ;
Zhu, Jia .
NANO ENERGY, 2018, 51 :451-456
[4]   Hydrophilic directional slippery rough surfaces for water harvesting [J].
Dai, Xianming ;
Sun, Nan ;
Nielsen, Steven O. ;
Stogin, Birgitt Boschitsch ;
Wang, Jing ;
Yang, Shikuan ;
Wong, Tak-Sing .
SCIENCE ADVANCES, 2018, 4 (03)
[5]   Investigation on enhancing effects of Au nanoparticles on solar steam generation in graphene oxide nanofluids [J].
Fu, Yang ;
Mei, Tao ;
Wang, Gang ;
Guo, Ankang ;
Dai, Guangchao ;
Wang, Sheng ;
Wang, Jianying ;
Li, Jinhua ;
Wang, Xianbao .
APPLIED THERMAL ENGINEERING, 2017, 114 :961-968
[6]   Tailoring Aerogels and Related 3D Macroporous Monoliths for Interfacial Solar Vapor Generation [J].
Hu, Xiaozhen ;
Zhu, Jia .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (03)
[7]   Review of researches and developments on solar stills [J].
Kabeel, A. E. ;
El-Agouz, S. A. .
DESALINATION, 2011, 276 (1-3) :1-12
[8]   Latest development in salt removal from solar-driven interfacial saline water evaporators: Advanced strategies and challenges [J].
Li, Haoran ;
Yan, Zhe ;
Li, Yan ;
Hong, Wenpeng .
WATER RESEARCH, 2020, 177
[9]   Water Harvesting from Air: Current Passive Approaches and Outlook [J].
Liu, Xiaoyi ;
Beysens, Daniel ;
Bourouina, Tarik .
ACS MATERIALS LETTERS, 2022, 4 (05) :1003-1024
[10]   Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion [J].
Mandal, Jyotirmoy ;
Wang, Derek ;
Overvig, Adam C. ;
Shi, Norman N. ;
Paley, Daniel ;
Zangiabadi, Amirali ;
Cheng, Qian ;
Barmak, Katayun ;
Yu, Nanfang ;
Yang, Yuan .
ADVANCED MATERIALS, 2017, 29 (41)