Stability of periodic Kuramoto-Sivashinsky waves

被引:16
作者
Barker, Blake [1 ]
Johnson, Mathew A. [2 ]
Noble, Pascal
Rodrigues, L. Miguel [3 ]
Zumbrun, Kevin [1 ]
机构
[1] Indiana Univ, Bloomington, IN 47405 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Univ Lyon 1, Inst Camille Jordan, UMR CNRS 5208, F-69622 Villeurbanne, France
基金
美国国家科学基金会;
关键词
Periodic waves; Kuramoto-Sivashinsky equations; Modulational stability; VISCOUS CONSERVATION-LAWS; NONLINEAR STABILITY;
D O I
10.1016/j.aml.2011.10.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we announce a general result resolving the long-standing question of nonlinear modulational stability, or stability with respect to localized perturbations, of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation, establishing that spectral modulational stability, defined in the standard way, implies nonlinear modulational stability with sharp rates of decay. The approach extends readily to other second- and higher-order parabolic equations, for example, the Cahn Hilliard equation or more general thin film models. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:824 / 829
页数:6
相关论文
共 18 条
[1]  
Barker B., 2011, NONLINEAR MODULATION
[2]  
Barker B., 2010, P SEM CTR M IN PRESS
[3]   Stability of compressive and undercompressive thin film travelling waves [J].
Bertozzi, AL ;
Münch, A ;
Shearer, M ;
Zumbrun, K .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 :253-291
[4]  
Chang H.-h., 2002, STUD INTERF SCI, V14
[5]   NONLINEAR SATURATION OF DISSIPATIVE TRAPPED-ION MODE BY MODE-COUPLING [J].
COHEN, BI ;
KROMMES, JA ;
TANG, WM ;
ROSENBLUTH, MN .
NUCLEAR FUSION, 1976, 16 (06) :971-992
[6]   SpectrUW: A laboratory for the numerical exploration of spectra of linear operators [J].
Deconinck, Bernard ;
Kiyak, Firat ;
Carter, John D. ;
Kutz, J. Nathan .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (4-5) :370-378
[7]  
Doelman A, 2009, MEM AM MATH SOC, V199, P3
[8]   VISCOELASTIC BEHAVIOR OF CELLULAR SOLUTIONS TO THE KURAMOTO-SIVASHINSKY MODEL [J].
FRISCH, U ;
SHE, ZS ;
THUAL, O .
JOURNAL OF FLUID MECHANICS, 1986, 168 :221-240
[9]  
GARDNER RA, 1993, J MATH PURE APPL, V72, P415
[10]   NONLINEAR STABILITY OF VISCOUS ROLL WAVES [J].
Johnson, Mathew A. ;
Zumbrun, Kevin ;
Noble, Pascal .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) :577-611