Bounded length 3 representations of the Virasoro Lie algebra

被引:7
作者
Conley, CH [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
D O I
10.1155/S1073792801000320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:609 / 628
页数:20
相关论文
共 9 条
[1]  
Bouarroudj S, 1998, INT MATH RES NOTICES, V1998, P25
[2]  
Cohen P.B., 1997, Progress in Nonlinear Differential Equations and Their Applications, V26, P17
[3]   HOMOLOGY OF THE LIE-ALGEBRA OF VECTOR-FIELDS ON THE LINE [J].
FEIGIN, BL ;
FUKS, DB .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1980, 14 (03) :201-212
[4]  
GARGOUBI H, 1996, INT RES MATH NOTES, V5
[5]   Projectively equivariant symbol calculus [J].
Lecomte, PBA ;
Ovsienko, VY .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (03) :173-196
[6]   CLASSIFICATION OF THE INDECOMPOSABLE BOUNDED ADMISSIBLE MODULES OVER THE VIRASORO LIE-ALGEBRA WITH WEIGHTSPACES OF DIMENSION NOT EXCEEDING 2 [J].
MARTIN, C ;
PIARD, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (03) :465-493
[7]   INDECOMPOSABLE MODULES OVER THE VIRASORO LIE-ALGEBRA AND A CONJECTURE OF V KAC [J].
MARTIN, C ;
PIARD, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (01) :109-132
[8]   CLASSIFICATION OF HARISH-CHANDRA MODULES OVER THE VIRASORO LIE-ALGEBRA [J].
MATHIEU, O .
INVENTIONES MATHEMATICAE, 1992, 107 (02) :225-234
[9]  
Zhelobenko D. P., 1989, ADV STUDIES CONT MAT, V33, P85