Microglial metabolic flexibility supports immune surveillance of the brain parenchyma

被引:206
作者
Bernier, Louis-Philippe [1 ]
York, Elisa M. [1 ]
Kamyabi, Alireza [1 ]
Choi, Hyun B. [1 ]
Weilinger, Nicholas L. [1 ]
MacVicar, Brian A. [1 ]
机构
[1] Univ British Columbia, Djavad Mowafaghian Ctr Brain Hlth, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MITOCHONDRIAL NADH FLUORESCENCE; GLUTAMATE-GLUTAMINE CYCLE; NEURONAL NMDA RECEPTORS; IN-VIVO; ENERGY-METABOLISM; NEUROTRANSMITTER RECEPTORS; ASTROCYTE GLYCOGEN; CELL-METABOLISM; RAT-BRAIN; ACTIVATION;
D O I
10.1038/s41467-020-15267-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microglia are highly motile cells that continuously monitor the brain environment and respond to damage-associated cues. While glucose is the main energy substrate used by neurons in the brain, the nutrients metabolized by microglia to support surveillance of the parenchyma remain unexplored. Here, we use fluorescence lifetime imaging of intracellular NAD(P)H and time-lapse two-photon imaging of microglial dynamics in vivo and in situ, to show unique aspects of the microglial metabolic signature in the brain. Microglia are metabolically flexible and can rapidly adapt to consume glutamine as an alternative metabolic fuel in the absence of glucose. During insulin-induced hypoglycemia in vivo or in aglycemia in acute brain slices, glutaminolysis supports the maintenance of microglial process motility and damage-sensing functions. This metabolic shift sustains mitochondrial metabolism and requires mTOR-dependent signaling. This remarkable plasticity allows microglia to maintain their critical surveillance and phagocytic roles, even after brain neuroenergetic homeostasis is compromised. Glucose is the main source of fuel in the brain. Here, the authors show that in the absence of glucose, glutamine is required for microglia to maintain their immune surveillance function.
引用
收藏
页数:17
相关论文
共 110 条
[1]   Rictor regulates cell migration by suppressing RhoGDI2 [J].
Agarwal, N. K. ;
Chen, C-H ;
Cho, H. ;
Boulbes, D. R. ;
Spooner, E. ;
Sarbassov, D. D. .
ONCOGENE, 2013, 32 (20) :2521-2526
[2]   The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer [J].
Bak, Lasse K. ;
Schousboe, Arne ;
Waagepetersen, Helle S. .
JOURNAL OF NEUROCHEMISTRY, 2006, 98 (03) :641-653
[3]   ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo [J].
Barcia, Carlos ;
Maria Ros, Carmen ;
Annese, Valentina ;
Carrillo-de Sauvage, Maria Angeles ;
Ros-Bernal, Francisco ;
Gomez, Aurora ;
Enrique Yuste, Jose ;
Maria Campuzano, Carmen ;
de Pablos, Vicente ;
Fernandez-Villalba, Emiliano ;
Trinidad Herrero, Maria .
SCIENTIFIC REPORTS, 2012, 2
[4]   Brain Energy Metabolism: Focus on Astrocyte-Neuron Metabolic Cooperation [J].
Belanger, Mireille ;
Allaman, Igor ;
Magistretti, Pierre J. .
CELL METABOLISM, 2011, 14 (06) :724-738
[5]   Nanoscale Surveillance of the Brain by Microglia via cAMP-Regulated Filopodia [J].
Bernier, Louis-Philippe ;
Bohlen, Christopher J. ;
York, Elisa M. ;
Choi, Hyun B. ;
Kamyabi, Alireza ;
Dissing-Olesen, Lasse ;
Hefendehl, Jasmin K. ;
Collins, Hannah Y. ;
Stevens, Beth ;
Barres, Ben A. ;
MacVicar, Brian A. .
CELL REPORTS, 2019, 27 (10) :2895-+
[6]   Separating NADH and NADPH fluorescence in live cells and tissues using FLIM [J].
Blacker, Thomas S. ;
Mann, Zoe F. ;
Gale, Jonathan E. ;
Ziegler, Mathias ;
Bain, Angus J. ;
Szabadkai, Gyorgy ;
Duchen, Michael R. .
NATURE COMMUNICATIONS, 2014, 5
[7]   Distribution of mitochondrial NADH fluorescence lifetimes: Steady-state kinetics of matrix NADH interactions [J].
Blinova, K ;
Carroll, S ;
Bose, S ;
Smirnov, AV ;
Harvey, JJ ;
Knutson, JR ;
Balaban, RS .
BIOCHEMISTRY, 2005, 44 (07) :2585-2594
[8]   Mitochondrial NADH fluorescence is enhanced by Complex I binding [J].
Blinova, Ksenia ;
Levine, Rodney L. ;
Boja, Emily S. ;
Griffiths, Gary L. ;
Shi, Zhen-Dan ;
Ruddy, Brian ;
Balaban, Robert S. .
BIOCHEMISTRY, 2008, 47 (36) :9636-9645
[9]   A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes [J].
Bouyakdan, Khalil ;
Taib, Bouchra ;
Budry, Lionel ;
Zhao, Shangang ;
Rodaros, Demetra ;
Neess, Ditte ;
Mandrup, Susanne ;
Faergeman, Nils. J. ;
Alquier, Thierry .
JOURNAL OF NEUROCHEMISTRY, 2015, 133 (02) :253-265
[10]   Astrocyte glycogen and brain energy metabolism [J].
Brown, Angus M. ;
Ransom, Bruce R. .
GLIA, 2007, 55 (12) :1263-1271