Maxwell equations in curved space-time: non-vanishing magnetic field in pure electrostatic systems

被引:3
作者
Nikolaev, N. N. [1 ,2 ]
Vergeles, S. N. [1 ,2 ]
机构
[1] Russian Acad Sci, Landau Inst Theoret Phys, Chernogolovka 42432, Moscow Region, Russia
[2] Moscow Inst Phys & Technol, Dept Theoret Phys, Dolgoprudnyj 141707, Moskow Region, Russia
关键词
Classical Theories of Gravity; Precision QED;
D O I
10.1007/JHEP04(2020)191
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Solutions of the Maxwell equations for electrostatic systems with manifestly vanishing electric currents in the curved space-time for stationary metrics are shown to exhibit a non-vanishing magnetic field of pure geometric origin. In contrast to the conventional magnetic field of the Earth it can not be screened away by a magnetic shielding. As an example of practical significance we treat electrostatic systems at rest on the rotating Earth and derive the relevant geometric magnetic field. We comment on its impact on the ultimate precision searches of the electric dipole moments of ultracold neutrons and of protons in all electric storage rings.
引用
收藏
页数:19
相关论文
共 20 条
  • [1] Magnetic-field uniformity in neutron electric-dipole-moment experiments
    Abel, C.
    Ayres, N. J.
    Baker, T.
    Ban, G.
    Bison, G.
    Bodek, K.
    Bondar, V
    Crawford, C. B.
    Chiu, P-J
    Chanel, E.
    Chowdhuri, Z.
    Daum, M.
    Dechenaux, B.
    Emmenegger, S.
    Ferraris-Bouchez, L.
    Flaux, P.
    Geltenbort, P.
    Green, K.
    Griffith, W. C.
    van der Grinten, M.
    Harris, P. G.
    Henneck, R.
    Hild, N.
    Iaydjiev, P.
    Ivanov, S. N.
    Kasprzak, M.
    Kermaidic, Y.
    Kirch, K.
    Koch, H-C
    Komposch, S.
    Koss, P. A.
    Kozela, A.
    Krempel, J.
    Lauss, B.
    Lefort, T.
    Lemiere, Y.
    Leredde, A.
    Mohanmurthy, P.
    Pais, D.
    Piegsa, F. M.
    Pignol, G.
    Quemener, G.
    Rawlik, M.
    Rebreyend, D.
    Ries, D.
    Roccia, S.
    Rozpedzik, D.
    Schmidt-Wellenburg, P.
    Schnabel, A.
    Severijns, N.
    [J]. PHYSICAL REVIEW A, 2019, 99 (04)
  • [2] Abusaif F., ARXIV191207881
  • [3] A storage ring experiment to detect a proton electric dipole moment
    Anastassopoulos, V.
    Andrianov, S.
    Baartman, R.
    Baessler, S.
    Bai, M.
    Benante, J.
    Berz, M.
    Blaskiewicz, M.
    Bowcock, T.
    Brown, K.
    Casey, B.
    Conte, M.
    Crnkovic, J. D.
    D'Imperio, N.
    Fanourakis, G.
    Fedotov, A.
    Fierlinger, P.
    Fischer, W.
    Gaisser, M. O.
    Giomataris, Y.
    Grosse-Perdekamp, M.
    Guidoboni, G.
    Haciomeroglu, S.
    Hoffstaetter, G.
    Huang, H.
    Incagli, M.
    Ivanov, A.
    Kawall, D.
    Kim, Y. I.
    King, B.
    Koop, I. A.
    Lazarus, D. M.
    Lebedev, V.
    Lee, M. J.
    Lee, S.
    Lee, Y. H.
    Lehrach, A.
    Lenisa, P.
    Sandri, P. Levi
    Luccio, A. U.
    Lyapin, A.
    MacKay, W.
    Maier, R.
    Makino, K.
    Malitsky, N.
    Marciano, W. J.
    Meng, W.
    Meot, F.
    Metodiev, E. M.
    Miceli, L.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11)
  • [4] Baker CA, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.149102
  • [5] PRECESSION OF THE POLARIZATION OF PARTICLES MOVING IN A HOMOGENEOUS ELECTROMAGNETIC FIELD
    BARGMANN, V
    MICHEL, L
    TELEGDI, VL
    [J]. PHYSICAL REVIEW LETTERS, 1959, 2 (10) : 435 - 436
  • [6] Electric dipole moments of atoms, molecules, nuclei, and particles
    Chupp, T. E.
    Fierlinger, P.
    Ramsey-Musolf, M. J.
    Singh, J. T.
    [J]. REVIEWS OF MODERN PHYSICS, 2019, 91 (01)
  • [7] Electro dynamics of the rotating electron
    Frenkel, J
    [J]. ZEITSCHRIFT FUR PHYSIK, 1926, 37 (4/5): : 243 - 262
  • [8] DERIVATION OF GENERALIZED THOMAS-BARGMANN-MICHEL-TELEGDI EQUATION FOR A PARTICLE WITH ELECTRIC DIPOLE MOMENT
    Fukuyama, Takeshi
    Silenko, Alexander J.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (29):
  • [9] Comment on "Improved experimental limit on the electric dipole moment of the neutron"
    Lamoreaux, S. K.
    Golub, R.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [10] Landau LD., 1987, The classical theory of fields