A Data-Driven Home Energy Scheduling Strategy Under the Uncertainty in Photovoltaic Generations
被引:5
作者:
Du, Zunsheng
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R ChinaShandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
Du, Zunsheng
[1
]
Wang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Dept Mech & Elect Engn, Tai An 271019, Shandong, Peoples R ChinaShandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
Wang, Wei
[2
]
Zhang, Jianzhong
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Dept Mech & Elect Engn, Tai An 271019, Shandong, Peoples R ChinaShandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
Zhang, Jianzhong
[2
]
Zhang, Yumin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R ChinaShandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
Zhang, Yumin
[1
]
Xu, Xingming
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Dept Mech & Elect Engn, Tai An 271019, Shandong, Peoples R ChinaShandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
Xu, Xingming
[2
]
Liu, Jingwen
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R ChinaShandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
Liu, Jingwen
[1
]
机构:
[1] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
[2] Shandong Univ Sci & Technol, Dept Mech & Elect Engn, Tai An 271019, Shandong, Peoples R China
来源:
IEEE ACCESS
|
2020年
/
8卷
/
08期
基金:
中国国家自然科学基金;
关键词:
Home energy scheduling;
stochastic optimization;
photovoltaic (PV) outputs;
Gaussian mixture model (GMM);
prediction strength of clustering method;
DEMAND RESPONSE;
RENEWABLE ENERGY;
MANAGEMENT;
LOAD;
OPTIMIZATION;
OPERATION;
PREDICTION;
APPLIANCES;
SYSTEM;
D O I:
10.1109/ACCESS.2020.2980850
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
To address the uncertainty in photovoltaic (PV) outputs for day-ahead home energy scheduling in hourly timescale, a novel stochastic optimization strategy based data-driven method is proposed. Based on available historical PV outputs, the Gaussian mixture model (GMM) algorithm combined with improved prediction strength of clustering method is applied to establish the forecasted probabilistic PV outputs model. Based on the seven-step approximation model of Gaussian distribution, only PV outputs with larger probability level at each hour are used to generate scenarios. Then the typical scenario set can be constructed by scenario reduction method. By finding the solution in typical scenario set using mixed-integer nonlinear programming (MINLP), the scheduling strategy will be closer to real cases. Test results verify the effectiveness of proposed probabilistic PV output model and solution method.