Average implicit linear difference scheme for generalized Rosenau-Burgers equation

被引:23
作者
Hu, Jinsong [2 ]
Hu, Bing [1 ]
Xu, Youcai [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Xihua Univ, Sch Math & Comp Engn, Chengdu 610039, Peoples R China
关键词
Generalized R-B equation; Difference scheme; Convergence; Stability;
D O I
10.1016/j.amc.2011.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a linear three-level average implicit finite difference scheme for the numerical solution of the initial-boundary value problem of Generalized Rosenau-Burgers equation is presented. Existence and uniqueness of numerical solutions are discussed. It is proved that the finite difference scheme is convergent in the order of O(tau(2) + h(2)) and stable. Numerical simulations show that the method is efficient. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7557 / 7563
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 1998, APPL ANAL, DOI DOI 10.1080/00036819808840635
[2]  
Bai Y., 2007, CHINESE J ACTA MATH, V30, P248
[3]  
Chunk SK, 2001, Appl. Anal., V77, P351, DOI DOI 10.1080/00036810108840914
[4]   Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation [J].
Hu, Bing ;
Xu, Youcai ;
Hu, Jinsong .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) :311-316
[5]  
KIM YD, 1998, J COMPUT APPL MATH, V5, P171
[6]   Asymptotic behavior of solutions to the Rosenau-Burgers equation with a periodic initial boundary [J].
Liu, Liping ;
Mei, Ming ;
Wong, Yau Shu .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) :2527-2539
[7]   A better asymptotic profile of Rosenau-Burgers equation [J].
Liu, LP ;
Mei, M .
APPLIED MATHEMATICS AND COMPUTATION, 2002, 131 (01) :147-170
[8]  
Manickam SAV, 1998, NUMER METH PART D E, V14, P695, DOI 10.1002/(SICI)1098-2426(199811)14:6<695::AID-NUM1>3.0.CO
[9]  
2-L
[10]  
Mei M., 1996, APPL ANAL, V63, P315