Development of in-flow label-free single molecule sensors using planar solid-state nanopore integrated microfluidic devices

被引:14
作者
Guzel, Fatma D. [1 ,2 ]
Miles, Benjamin [2 ]
机构
[1] Ankara Yildirim Beyazit Univ, Biomed Engn, TR-06010 Etlik, Turkey
[2] Imperial Coll London, Dept Chem, South Kensington Campus, London SW7 2AZ, England
关键词
biological techniques; microfluidics; nanosensors; biosensors; DNA; electrochemical sensors; silicon; nanoporous materials; flow sensors; flow measurement; microsensors; silicon compounds; elemental semiconductors; in-flow label-free single molecule sensors; label-free single molecule detection capability; electrochemical sensing; in-flow label-free electrochemical detection; hydrodynamic flow; planar solid-state nanopore integrated microfluidic devices; DNA molecule sequencing; solid-state nanopore biosensors; graphene; biomolecule sensing; Si3N4-Si; DNA-MOLECULES; TRANSPORT; CHALLENGES; SEPARATION; MEMBRANE; RELEASE;
D O I
10.1049/mnl.2018.5206
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanopore biosensors have attracted attention due to their label-free single molecule detection capability. To date, different materials and applications have been shown in the field, varying from Si3N4 to graphene and biomolecule sensing to DNA sequencing. Classical nanopore devices are composed of Si3N4 material supported on a Si wafer and the detection is largely based on electrochemical sensing using chambers of ml volumes on both sides of the nanopore device. In this study, in-flow label-free electrochemical detection of DNA molecules at single molecule level is shown using a classical Si3N4 nanopore device integrated into a microfluidic device. The layout of the device given here set the basics for future works and discussions regarding future microfluidic integrated solid-state nanopores and the behaviour of the molecule under the influence of hydrodynamic flow.
引用
收藏
页码:1352 / 1357
页数:6
相关论文
共 41 条
[1]   Recent advances in organ-on-a-chip technologies and future challenges: a review [J].
Avci, Huseyin ;
Dogan Guzel, Fatma ;
Erol, Salim ;
Akpek, Ali .
TURKISH JOURNAL OF CHEMISTRY, 2018, 42 (03) :587-610
[2]   Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing [J].
Ayub, Mariam ;
Ivanov, Aleksandar ;
Hong, Jongin ;
Kuhn, Phillip ;
Instuli, Emanuele ;
Edel, Joshua B. ;
Albrecht, Tim .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (45)
[3]   Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses [J].
Bahadir, Elif Burcu ;
Sezginturk, Mustafa Kemal .
ANALYTICAL BIOCHEMISTRY, 2015, 478 :107-120
[4]   Precise control of the size and noise of solid-state nanopores using high electric fields [J].
Beamish, Eric ;
Kwok, Harold ;
Tabard-Cossa, Vincent ;
Godin, Michel .
NANOTECHNOLOGY, 2012, 23 (40)
[5]   Nanopores formed by DNA origami: A review [J].
Bell, Nicholas A. W. ;
Keyser, Ulrich F. .
FEBS LETTERS, 2014, 588 (19) :3564-3570
[6]   Plasma-Assisted Large-Scale Nanoassembly of Metal-Insulator Bioplasmonic Mushrooms [J].
Bhalla, Nikhil ;
Sathish, Shivani ;
Galvin, Casey J. ;
Campbell, Robert A. ;
Sinha, Abhishek ;
Shen, Amy Q. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (01) :219-226
[7]   Protein phosphorylation detection using dual-mode field-effect devices and nanoplasmonic sensors [J].
Bhalla, Nikhil ;
Di Lorenzo, Mirella ;
Pula, Giordano ;
Estrela, Pedro .
SCIENTIFIC REPORTS, 2015, 5
[8]   Protein phosphorylation analysis based on proton release detection: Potential tools for drug discovery [J].
Bhalla, Nikhil ;
Di Lorenzo, Mirella ;
Pula, Giordano ;
Estrela, Pedro .
BIOSENSORS & BIOELECTRONICS, 2014, 54 :109-114
[9]   Probing single DNA molecule transport using fabricated nanopores [J].
Chen, P ;
Gu, JJ ;
Brandin, E ;
Kim, YR ;
Wang, Q ;
Branton, D .
NANO LETTERS, 2004, 4 (11) :2293-2298
[10]  
de Jong J., 2008, APPL MEMBRANE TECHNO