Scaling function, spectral function, and nucleon momentum distribution in nuclei

被引:27
|
作者
Antonov, A. N. [1 ]
Ivanov, M. V. [1 ,2 ]
Caballero, J. A. [3 ]
Barbaro, M. B. [4 ,5 ]
Udias, J. M. [2 ]
de Guerra, E. Moya [2 ]
Donnelly, T. W. [6 ,7 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria
[2] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Atom, Grp Fis Nucl, E-28040 Madrid, Spain
[3] Univ Seville, Dept Fis Atom Mol & Nucl, E-41080 Seville, Spain
[4] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[6] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[7] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW C | 2011年 / 83卷 / 04期
关键词
SHORT-RANGE CORRELATIONS; ELECTRON-SCATTERING; FINITE NUCLEI; DENSITY; APPROXIMATION; ORBITALS; SYSTEMS;
D O I
10.1103/PhysRevC.83.045504
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The link between the scaling function extracted from the analysis of (e, e') cross sections and the spectral function/momentum distribution in nuclei is revisited. Several descriptions of the spectral function based on the independent particle model are employed, together with the inclusion of nucleon correlations, and effects of the energy dependence arising from the width of the hole states are investigated. Although some of these approaches provide rough overall agreement with data, they are not found to be capable of reproducing one of the distinctive features of the experimental scaling function, namely its asymmetry. However, the addition of final-state interactions, incorporated in the present study using either relativistic mean-field theory or via a complex optical potential, does lead to asymmetric scaling functions in accordance with data. The present analysis seems to indicate that final-state interactions constitute an essential ingredient and are required to provide a proper description of the experimental scaling function.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] The study of the gluon distribution function and reduced cross section behavior using the proton structure function
    Boroun, G. R.
    Rezaei, B.
    NUCLEAR PHYSICS A, 2021, 1006
  • [42] Thermal evolution of the single-particle spectral function in the half-filled Hubbard model and pseudogap
    Al Rashid, Harun
    Singh, Dheeraj Kumar
    PHYSICAL REVIEW B, 2023, 107 (12)
  • [43] Scaling limit of the loop-erased random walk Green's function
    Benes, Christian
    Lawler, Gregory F.
    Viklund, Fredrik
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (1-2) : 271 - 319
  • [44] Refractive index, density and distribution function in nematic mixtures
    Divya, AP
    Madhava, MS
    Revannasiddaiah, D
    Somashekar, R
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2001, 365 : 1845 - 1852
  • [45] Ray tracing the Wigner distribution function for optical simulations
    Mout, Marco
    Wick, Michael
    Bociort, Florian
    Petschulat, Joerg
    Urbach, Paul
    OPTICAL ENGINEERING, 2018, 57 (01)
  • [46] STABILITY OF THE DISTRIBUTION FUNCTION FOR PIECEWISE MONOTONIC MAPS ON THE INTERVAL
    Malek, Michal
    Raith, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (05) : 2527 - 2539
  • [47] Photon distribution function in blinking fluorescence of individual molecules
    Osad'ko, I. S.
    OPTICS COMMUNICATIONS, 2009, 282 (05) : 927 - 931
  • [48] Asymptotic Properties of Random Weighted Empirical Distribution Function
    Hu, Gaoge
    Gao, Shesheng
    Zhong, Yongmin
    Gu, Chengfan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (18) : 3812 - 3824
  • [49] PAIR DISTRIBUTION FUNCTION METHOD FOR THE STRUCTURAL DIAGNOSTICS OF NANOMATERIALS
    Moroz, Ella M.
    SEVENTEENTH ISRAELI - RUSSIAN BI-NATIONAL WORKSHOP 2018: OPTIMIZATION OF THE COMPOSITION, STRUCTURE AND PROPERTIES OF METALS, OXIDES, COMPOSITES, NANO AND AMORPHOUS MATERIALS, 2018, : 127 - 148
  • [50] Wigner phase-space distribution as a wave function
    Bondar, Denys I.
    Cabrera, Renan
    Zhdanov, Dmitry V.
    Rabitz, Herschel A.
    PHYSICAL REVIEW A, 2013, 88 (05):