Scaling function, spectral function, and nucleon momentum distribution in nuclei

被引:27
|
作者
Antonov, A. N. [1 ]
Ivanov, M. V. [1 ,2 ]
Caballero, J. A. [3 ]
Barbaro, M. B. [4 ,5 ]
Udias, J. M. [2 ]
de Guerra, E. Moya [2 ]
Donnelly, T. W. [6 ,7 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria
[2] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Atom, Grp Fis Nucl, E-28040 Madrid, Spain
[3] Univ Seville, Dept Fis Atom Mol & Nucl, E-41080 Seville, Spain
[4] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[6] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[7] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW C | 2011年 / 83卷 / 04期
关键词
SHORT-RANGE CORRELATIONS; ELECTRON-SCATTERING; FINITE NUCLEI; DENSITY; APPROXIMATION; ORBITALS; SYSTEMS;
D O I
10.1103/PhysRevC.83.045504
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The link between the scaling function extracted from the analysis of (e, e') cross sections and the spectral function/momentum distribution in nuclei is revisited. Several descriptions of the spectral function based on the independent particle model are employed, together with the inclusion of nucleon correlations, and effects of the energy dependence arising from the width of the hole states are investigated. Although some of these approaches provide rough overall agreement with data, they are not found to be capable of reproducing one of the distinctive features of the experimental scaling function, namely its asymmetry. However, the addition of final-state interactions, incorporated in the present study using either relativistic mean-field theory or via a complex optical potential, does lead to asymmetric scaling functions in accordance with data. The present analysis seems to indicate that final-state interactions constitute an essential ingredient and are required to provide a proper description of the experimental scaling function.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Self-Consistent Green's Function Theory for Atomic Nuclei
    Soma, Vittorio
    FRONTIERS IN PHYSICS, 2020, 8 (08):
  • [32] A new representation of power spectral density and correlation function by means of fractional spectral moments
    Cottone, Giulio
    Di Paola, Mario
    PROBABILISTIC ENGINEERING MECHANICS, 2010, 25 (03) : 348 - 353
  • [33] DISTRIBUTION OF THE LOGARITHMIC DERIVATIVE OF A RATIONAL FUNCTION ON THE LINE
    Komarov, M. A.
    ACTA MATHEMATICA HUNGARICA, 2021, 163 (02) : 623 - 639
  • [34] Nonlinear correction to the nuclear gluon distribution function
    Abdi, F.
    Rezaei, B.
    EUROPEAN PHYSICAL JOURNAL A, 2025, 61 (01)
  • [35] On the density function of the distribution of real algebraic numbers
    Koleda, Denis
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2017, 29 (01): : 179 - 200
  • [36] An accurate approximation for the standard normal distribution function
    Eidous, Omar
    Abu-Hawwas, Jawaher
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2021, 42 (01) : 17 - 27
  • [37] Illustration of a TDDFT spatial overlap diagnostic by basis function exponent scaling
    Peach, Michael J. G.
    Tozer, David J.
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 914 (1-3): : 110 - 114
  • [38] Realistic spectral function model for charged-current quasielastic-like neutrino and antineutrino scattering cross sections on 12C
    Ivanov, M. V.
    Antonov, A. N.
    Megias, G. D.
    Caballero, J. A.
    Barbaro, M. B.
    Amaro, J. E.
    Ruiz Simo, I.
    Donnelly, T. W.
    Udias, J. M.
    PHYSICAL REVIEW C, 2019, 99 (01)
  • [39] Closed form expression for the inverse cumulative distribution function of Nakagami distribution
    Hilary Okagbue
    Muminu O. Adamu
    Timothy A. Anake
    Wireless Networks, 2020, 26 : 5063 - 5084
  • [40] Closed form expression for the inverse cumulative distribution function of Nakagami distribution
    Okagbue, Hilary
    Adamu, Muminu O.
    Anake, Timothy A.
    WIRELESS NETWORKS, 2020, 26 (07) : 5063 - 5084