Scaling function, spectral function, and nucleon momentum distribution in nuclei

被引:27
|
作者
Antonov, A. N. [1 ]
Ivanov, M. V. [1 ,2 ]
Caballero, J. A. [3 ]
Barbaro, M. B. [4 ,5 ]
Udias, J. M. [2 ]
de Guerra, E. Moya [2 ]
Donnelly, T. W. [6 ,7 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BG-1784 Sofia, Bulgaria
[2] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Atom, Grp Fis Nucl, E-28040 Madrid, Spain
[3] Univ Seville, Dept Fis Atom Mol & Nucl, E-41080 Seville, Spain
[4] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[6] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[7] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW C | 2011年 / 83卷 / 04期
关键词
SHORT-RANGE CORRELATIONS; ELECTRON-SCATTERING; FINITE NUCLEI; DENSITY; APPROXIMATION; ORBITALS; SYSTEMS;
D O I
10.1103/PhysRevC.83.045504
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The link between the scaling function extracted from the analysis of (e, e') cross sections and the spectral function/momentum distribution in nuclei is revisited. Several descriptions of the spectral function based on the independent particle model are employed, together with the inclusion of nucleon correlations, and effects of the energy dependence arising from the width of the hole states are investigated. Although some of these approaches provide rough overall agreement with data, they are not found to be capable of reproducing one of the distinctive features of the experimental scaling function, namely its asymmetry. However, the addition of final-state interactions, incorporated in the present study using either relativistic mean-field theory or via a complex optical potential, does lead to asymmetric scaling functions in accordance with data. The present analysis seems to indicate that final-state interactions constitute an essential ingredient and are required to provide a proper description of the experimental scaling function.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method
    Ma, L. X.
    Wang, F. Q.
    Wang, C. A.
    Wang, C. C.
    Tan, J. Y.
    APPLIED OPTICS, 2015, 54 (33) : 9863 - 9874
  • [22] Spectral function distributions in the correlated Anderson model
    Khan, Niaz Ali
    CHINESE JOURNAL OF PHYSICS, 2023, 85 : 733 - 740
  • [23] Least Error Sample Distribution Function
    Pastushenko, Vassili F.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2009, 8 (02) : 396 - 408
  • [24] A New Algorithm of Interpolation Wavelet Construction Based on Scaling Function
    Zhang, Zhiguo
    Zhou, Yi
    Qian, Zheng
    2016 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL. 2, 2016, : 291 - 295
  • [25] New extended method for ?' scaling function of inclusive electron scattering
    Wang, Lei
    Niu, Qinglin
    Zhang, Jinjuan
    Liu, Jian
    Ren, Zhongzhou
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (10)
  • [26] Ab initio self-consistent Gorkov-Green's function calculations of semimagic nuclei: Formalism at second order with a two-nucleon interaction
    Soma, V.
    Duguet, T.
    Barbieri, C.
    PHYSICAL REVIEW C, 2011, 84 (06):
  • [27] Theoretical analysis of the momentum-dependent loss function of bulk Ag
    Alkauskas, A.
    Schneider, S. D.
    Sagmeister, S.
    Ambrosch-Draxl, C.
    Hebert, C.
    ULTRAMICROSCOPY, 2010, 110 (08) : 1081 - 1086
  • [28] Spectral function of the Anderson impurity model at finite temperatures
    Isidori, Aldo
    Roosen, David
    Bartosch, Lorenz
    Hofstetter, Walter
    Kopietz, Peter
    PHYSICAL REVIEW B, 2010, 81 (23):
  • [29] SPECTRAL FUNCTION FOR A NONSYMMETRIC DIFFERENTIAL OPERATOR ON THE HALF LINE
    Ning, Wuqing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [30] Recursion method and one-hole spectral function of the Majumdar-Ghosh model
    Kuzian, RO
    Hayn, R
    Richter, J
    EUROPEAN PHYSICAL JOURNAL B, 2003, 35 (01) : 21 - 31