Phase transition in spatial epidemics using cellular automata with noise

被引:18
|
作者
Sun, Gui-Quan [1 ,2 ]
Jin, Zhen [1 ]
Song, Li-Peng [1 ]
Chakraborty, Amit [2 ]
Li, Bai-Lian [1 ,2 ]
机构
[1] N Univ China, Dept Math, Taiyuan 030051, Shanxi, Peoples R China
[2] Univ Calif Riverside, Dept Bot & Plant Sci, Ecol Complex & Modeling Lab, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
Cellular automata; Noise; Epidemiology; Coherence resonance; Extinction; COHERENCE RESONANCE; ENVIRONMENTAL STOCHASTICITY; POPULATION-DYNAMICS; EXTINCTION RISK; COMMUNITY SIZE; SIMPLE-MODEL; PERIODICITY; MEASLES; WAVES; SYNCHRONIZATION;
D O I
10.1007/s11284-010-0789-9
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
One of the central issues in studying the complex population patterns observed in nature is the role of stochasticity. In this paper, the effects of additive spatiotemporal random variations-noise-are introduced to an epidemic model. The no-noise model exhibits a phase transition from a disease-free state to an endemic state. However, this phase transition can revert in a resonance-like manner depending on noise intensity when introducing nonzero random variations to the model. On the other hand, given a regime where disease can persist, noise can induce disappearance of the phase transition. The results obtained show that noise plays a tremendous role in the spread of the disease state, which has implications for how we try to prevent, and eventually eradicate, disease.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 50 条
  • [1] Modeling epidemics using cellular automata
    White, S. Hoya
    del Rey, A. Martin
    Sanchez, G. Rodriguez
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 193 - 202
  • [2] Phase transitions in cellular automata models of spatial susceptible-infected-resistant-susceptible epidemics
    郑智贞
    王爱玲
    Chinese Physics B, 2009, (02) : 489 - 500
  • [3] Phase transitions in cellular automata models of spatial susceptible-infected-resistant-susceptible epidemics
    Zheng Zhi-Zhen
    Wang Ai-Ling
    CHINESE PHYSICS B, 2009, 18 (02) : 489 - 500
  • [4] Small-World Effect in Epidemics Using Cellular Automata
    Gagliardi, Henrique Fabricio
    Alves, Domingos
    MATHEMATICAL POPULATION STUDIES, 2010, 17 (02) : 79 - 90
  • [5] Phase Transition in Elementary Cellular Automata with Memory
    Ninagawa, Shigeru
    Adamatzky, Andrew
    Alonso-Sanz, Ramon
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (09):
  • [6] Emergence of Distinct Spatial Patterns in Cellular Automata with Inertia: A Phase Transition-Like Behavior
    Kramer, Klaus
    Koehler, Marlus
    Fiore, Carlos E.
    da Luz, Marcos G. E.
    ENTROPY, 2017, 19 (03)
  • [7] Cellular automata model of phase transition in binary mixtures
    Vannozzi, C
    Fiorentino, D
    D'Amore, M
    Rumshitzki, DS
    Dress, A
    Mauri, R
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (08) : 2892 - 2896
  • [8] IS THERE A SHARP PHASE-TRANSITION FOR DETERMINISTIC CELLULAR AUTOMATA
    WOOTTERS, WK
    LANGTON, CG
    PHYSICA D, 1990, 45 (1-3): : 95 - 104
  • [9] A cellular automata model of epidemics of a heterogeneous susceptibility
    Jin Zhen
    Liu Quan-Xing
    CHINESE PHYSICS, 2006, 15 (06): : 1248 - 1256
  • [10] Modeling the Spread of Epidemics Based on Cellular Automata
    Dai, Jindong
    Zhai, Chi
    Ai, Jiali
    Ma, Jiaying
    Wang, Jingde
    Sun, Wei
    PROCESSES, 2021, 9 (01) : 1 - 13