Machine Learning-Based Prediction of Elevated PTH Levels Among the US General Population

被引:5
|
作者
Kato, Hajime [1 ,2 ]
Hoshino, Yoshitomo [1 ,2 ]
Hidaka, Naoko [1 ,2 ]
Ito, Nobuaki [1 ,2 ]
Makita, Noriko [1 ,2 ]
Nangaku, Masaomi [1 ]
Inoue, Kosuke [3 ]
机构
[1] Univ Tokyo Hosp, Div Nephrol & Endocrinol, Tokyo 1138655, Japan
[2] Univ Tokyo Hosp, Osteoporosis Ctr, Tokyo 1138655, Japan
[3] Kyoto Univ, Grad Sch Med, Dept Social Epidemiol, Kyoto 6048146, Japan
关键词
parathyroid hormone; hyperparathyroidism; machine learning; prediction model; NHANES; PARATHYROID-HORMONE; VITAMIN-D; PRIMARY HYPERPARATHYROIDISM; 25-HYDROXYVITAMIN D; OLDER-ADULTS; MORTALITY; CALCIUM; HEALTH; AGE;
D O I
10.1210/clinem/dgac544
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Context Although elevated parathyroid hormone (PTH) levels are associated with higher mortality risks, the evidence is limited as to when PTH is expected to be elevated and thus should be measured among the general population. Objective This work aimed to build a machine learning-based prediction model of elevated PTH levels based on demographic, lifestyle, and biochemical data among US adults. Methods This population-based study included adults aged 20 years or older with a measurement of serum intact PTH from the National Health and Nutrition Examination Survey (NHANES) 2003 to 2006. We used the NHANES 2003 to 2004 cohort (n = 4096) to train 6 machine-learning prediction models (logistic regression with and without splines, lasso regression, random forest, gradient-boosting machines [GBMs], and SuperLearner). Then, we used the NHANES 2005 to 2006 cohort (n = 4112) to evaluate the model performance including area under the receiver operating characteristic curve (AUC). Results Of 8208 US adults, 753 (9.2%) showed PTH greater than 74 pg/mL. Across 6 algorithms, the highest AUC was observed among random forest (AUC [95% CI] = 0.79 [0.76-0.81]), GBM (AUC [95% CI] = 0.78 [0.75-0.81]), and SuperLearner (AUC [95% CI] = 0.79 [0.76-0.81]). The AUC improved from 0.69 to 0.77 when we added cubic splines for the estimated glomerular filtration rate (eGFR) in the logistic regression models. Logistic regression models with splines showed the best calibration performance (calibration slope [95% CI] = 0.96 [0.86-1.06]), while other algorithms were less calibrated. Among all covariates included, eGFR was the most important predictor of the random forest model and GBM. Conclusion In this nationally representative data in the United States, we developed a prediction model that potentially helps us to make accurate and early detection of elevated PTH in general clinical practice. Future studies are warranted to assess whether this prediction tool for elevated PTH would improve adverse health outcomes.
引用
收藏
页码:3222 / 3230
页数:9
相关论文
共 50 条
  • [31] Machine learning-based models for the prediction of breast cancer recurrence risk
    Duo Zuo
    Lexin Yang
    Yu Jin
    Huan Qi
    Yahui Liu
    Li Ren
    BMC Medical Informatics and Decision Making, 23
  • [32] Development and application of machine learning-based prediction model for distillation column
    Kwon, Hyukwon
    Oh, Kwang Cheol
    Choi, Yeongryeol
    Chung, Yongchul G.
    Kim, Junghwan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (05) : 1970 - 1997
  • [33] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [34] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [35] Machine Learning-Based Prediction of the Martensite Start Temperature
    Wentzien, Marcel
    Koch, Marcel
    Friedrich, Thomas
    Ingber, Jerome
    Kempka, Henning
    Schmalzried, Dirk
    Kunert, Maik
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (10)
  • [36] Machine learning-based icing prediction on wind turbines
    Kreutz, Markus
    Ait-Alla, Abderrahim
    Varasteh, Kamaloddin
    Oelker, Stephan
    Greulich, Andreas
    Freitag, Michael
    Thoben, Klaus-Dieter
    52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 : 423 - 428
  • [37] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [38] Machine Learning-Based Prediction of Stroke in Emergency Departments
    Abedi, Vida
    Misra, Debdipto
    Chaudhary, Durgesh
    Avula, Venkatesh
    Schirmer, Clemens M.
    Li, Jiang
    Zand, Ramin
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2024, 17
  • [39] Machine learning-based model for prediction of concrete strength
    Aswal, Vivek Singh
    Singh, B. K.
    Maheshwari, Rohit
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [40] Machine Learning-based RSSI Prediction in Factory Environments
    Webber, Julian
    Suga, Norisato
    Ano, Susumu
    Jou, Yafei
    Mehbodniya, Abolfazl
    Higashimori, Toshihide
    Yano, Kazuto
    Suzuki, Yoshinori
    PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 195 - 200