Sequential Recommendation via Stochastic Self-Attention

被引:88
|
作者
Fan, Ziwei [1 ,5 ]
Liu, Zhiwei [1 ]
Wang, Yu [1 ]
Wang, Alice [2 ]
Nazari, Zahra [2 ]
Zheng, Lei [3 ]
Peng, Hao [4 ]
Yu, Philip S. [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL 60680 USA
[2] Spotify, New York, NY USA
[3] Pinterest Inc, Chicago, IL USA
[4] Beihang Univ, Sch Cyber Sci & Technol, Beijing, Peoples R China
[5] Spotify Res, New York, NY USA
关键词
Sequential Recommendation; Transformer; Self-Attention; Uncertainty;
D O I
10.1145/3485447.3512077
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Sequential recommendation models the dynamics of a user's previous behaviors in order to forecast the next item, and has drawn a lot of attention. Transformer-based approaches, which embed items as vectors and use dot-product self-attention to measure the relationship between items, demonstrate superior capabilities among existing sequential methods. However, users' real-world sequential behaviors are uncertain rather than deterministic, posing a significant challenge to present techniques. We further suggest that dot-product-based approaches cannot fully capture collaborative transitivity, which can be derived in item-item transitions inside sequences and is beneficial for cold start items. We further argue that BPR loss has no constraint on positive and sampled negative items, which misleads the optimization. We propose a novel STOchastic Self-Attention (STOSA) to overcome these issues. STOSA, in particular, embeds each item as a stochastic Gaussian distribution, the covariance of which encodes the uncertainty. We devise a novel Wasserstein Self-Attention module to characterize item-item position-wise relationships in sequences, which effectively incorporates uncertainty into model training. Wasserstein attentions also enlighten the collaborative transitivity learning as it satisfies triangle inequality. Moreover, we introduce a novel regularization term to the ranking loss, which assures the dissimilarity between positive and the negative items. Extensive experiments on five real-world benchmark datasets demonstrate the superiority of the proposed model over state-of-the-art baselines, especially on cold start items. The code is available in https://github.com/zfan20/STOSA.
引用
收藏
页码:2036 / 2047
页数:12
相关论文
共 50 条
  • [21] Progressive Self-Attention Network with Unsymmetrical Positional Encoding for Sequential Recommendation
    Zhu, Yuehua
    Huang, Bo
    Jiang, Shaohua
    Yang, Muli
    Yang, Yanhua
    Zhong, Wenliang
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2029 - 2033
  • [22] SanMove: next location recommendation via self-attention network
    Wang, Bin
    Li, Huifeng
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    Yang, Tao
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 57 (03) : 330 - 343
  • [23] Non-invasive Self-attention for Side Information Fusion in Sequential Recommendation
    Liu, Chang
    Li, Xiaoguang
    Cai, Guohao
    Dong, Zhenhua
    Zhu, Hong
    Shang, Lifeng
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4249 - 4256
  • [24] Enhanced Self-Attention Mechanism for Long and Short Term Sequential Recommendation Models
    Zheng, Xiaoyao
    Li, Xingwang
    Chen, Zhenghua
    Sun, Liping
    Yu, Qingying
    Guo, Liangmin
    Luo, Yonglong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (03): : 2457 - 2466
  • [25] A Dual-View Knowledge Enhancing Self-Attention Network for Sequential Recommendation
    Tang, Hao
    Zhang, Feng
    Xu, Xinhai
    Zhang, Jieyuan
    Liu, Donghong
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 832 - 839
  • [26] Long- and short-term self-attention network for sequential recommendation
    Xu, Chengfeng
    Feng, Jian
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    NEUROCOMPUTING, 2021, 423 : 580 - 589
  • [27] FISSA: Fusing Item Similarity Models with Self-Attention Networks for Sequential Recommendation
    Lin, Jing
    Pan, Weike
    Ming, Zhong
    RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2020, : 130 - 139
  • [28] Review-Enhanced Sequential Recommendation with Self-Attention and Graph Collaborative Features
    Hong, Yunqi
    Ye, Wei
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1493 - 1499
  • [29] Group Recommendation via Self-Attention and Collaborative Metric Learning Model
    Wang, Haiyan
    Li, Yuliang
    Frimpong, Felix
    IEEE ACCESS, 2019, 7 : 164844 - 164855
  • [30] An improved sequential recommendation model based on spatial self-attention mechanism and meta learning
    Ni, Jianjun
    Shen, Tong
    Tang, Guangyi
    Shi, Pengfei
    Yang, Simon X.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (21) : 60003 - 60025