Sequential Recommendation via Stochastic Self-Attention

被引:90
|
作者
Fan, Ziwei [1 ,5 ]
Liu, Zhiwei [1 ]
Wang, Yu [1 ]
Wang, Alice [2 ]
Nazari, Zahra [2 ]
Zheng, Lei [3 ]
Peng, Hao [4 ]
Yu, Philip S. [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL 60680 USA
[2] Spotify, New York, NY USA
[3] Pinterest Inc, Chicago, IL USA
[4] Beihang Univ, Sch Cyber Sci & Technol, Beijing, Peoples R China
[5] Spotify Res, New York, NY USA
来源
PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22) | 2022年
关键词
Sequential Recommendation; Transformer; Self-Attention; Uncertainty;
D O I
10.1145/3485447.3512077
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Sequential recommendation models the dynamics of a user's previous behaviors in order to forecast the next item, and has drawn a lot of attention. Transformer-based approaches, which embed items as vectors and use dot-product self-attention to measure the relationship between items, demonstrate superior capabilities among existing sequential methods. However, users' real-world sequential behaviors are uncertain rather than deterministic, posing a significant challenge to present techniques. We further suggest that dot-product-based approaches cannot fully capture collaborative transitivity, which can be derived in item-item transitions inside sequences and is beneficial for cold start items. We further argue that BPR loss has no constraint on positive and sampled negative items, which misleads the optimization. We propose a novel STOchastic Self-Attention (STOSA) to overcome these issues. STOSA, in particular, embeds each item as a stochastic Gaussian distribution, the covariance of which encodes the uncertainty. We devise a novel Wasserstein Self-Attention module to characterize item-item position-wise relationships in sequences, which effectively incorporates uncertainty into model training. Wasserstein attentions also enlighten the collaborative transitivity learning as it satisfies triangle inequality. Moreover, we introduce a novel regularization term to the ranking loss, which assures the dissimilarity between positive and the negative items. Extensive experiments on five real-world benchmark datasets demonstrate the superiority of the proposed model over state-of-the-art baselines, especially on cold start items. The code is available in https://github.com/zfan20/STOSA.
引用
收藏
页码:2036 / 2047
页数:12
相关论文
共 50 条
  • [21] Long- and short-term self-attention network for sequential recommendation
    Xu, Chengfeng
    Feng, Jian
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    NEUROCOMPUTING, 2021, 423 : 580 - 589
  • [22] Enhanced Self-Attention Mechanism for Long and Short Term Sequential Recommendation Models
    Zheng, Xiaoyao
    Li, Xingwang
    Chen, Zhenghua
    Sun, Liping
    Yu, Qingying
    Guo, Liangmin
    Luo, Yonglong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (03): : 2457 - 2466
  • [23] Review-Enhanced Sequential Recommendation with Self-Attention and Graph Collaborative Features
    Hong, Yunqi
    Ye, Wei
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1493 - 1499
  • [24] Group Recommendation via Self-Attention and Collaborative Metric Learning Model
    Wang, Haiyan
    Li, Yuliang
    Frimpong, Felix
    IEEE ACCESS, 2019, 7 : 164844 - 164855
  • [25] Feature-Level Deeper Self-Attention Network With Contrastive Learning for Sequential Recommendation
    Hao, Yongjing
    Zhang, Tingting
    Zhao, Pengpeng
    Liu, Yanchi
    Sheng, Victor S.
    Xu, Jiajie
    Liu, Guanfeng
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 10112 - 10124
  • [26] LSAB: User Behavioral Pattern Modeling in Sequential Recommendation by Learning Self-Attention Bias
    Han, Di
    Huang, Yifan
    Liu, Junmin
    Liao, Kai
    Lin, Kunling
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (03)
  • [27] Locally enhanced denoising self-attention networks and decoupled position encoding for sequential recommendation
    Yang, Xingyao
    Dong, Xinsheng
    Yu, Jiong
    Li, Shuangquan
    Xiong, Xinyu
    Shen, Hongtao
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [28] Session-Based Recommendation with Self-Attention
    Anh, Pharr Hoang
    Bach, Ngo Xuan
    Phuong, Tu Minh
    SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 1 - 8
  • [29] Integrating the Pre-trained Item Representations with Reformed Self-attention Network for Sequential Recommendation
    Liang, Guanzhong
    Liao, Jie
    Zhou, Wei
    Wen, Junhao
    2022 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2022), 2022, : 27 - 36
  • [30] Improving Self-Attention Networks With Sequential Relations
    Zheng, Zaixiang
    Huang, Shujian
    Weng, Rongxiang
    Dai, Xinyu
    Chen, Jiajun
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2020, 28 : 1707 - 1716