On the spectral gap for finitely-generated subgroups of SU(2)

被引:87
作者
Bourgain, Jean [1 ]
Gamburd, Alex
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Univ Calif Santa Cruz, Sch Math, Inst Adv Study, Santa Cruz, CA 95064 USA
[3] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
D O I
10.1007/s00222-007-0072-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the spectral gap property for free subgroups of SU(2) generated by elements satisfying a noncommutative diophantine property, in particular for free subgroups generated by elements with algebraic entries.
引用
收藏
页码:83 / 121
页数:39
相关论文
共 31 条
[1]  
[Anonymous], 1923, FUND MATH, DOI DOI 10.4064/FM-4-1-7-33
[2]   A sum-product estimate in finite fields, and applications [J].
Bourgain, J ;
Katz, N ;
Tao, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) :27-57
[3]   On the Erdos-Volkmann and Katz-Tao ring conjectures [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) :334-365
[4]   Quaquaversal tilings and rotations [J].
Conway, JH ;
Radin, C .
INVENTIONES MATHEMATICAE, 1998, 132 (01) :179-188
[5]  
Dawson CM, 2006, QUANTUM INFORM COMPU, V6, P81
[6]  
DELAHARPE P, 1983, ENSEIGN MATH, V29, P129
[7]  
Draco B, 2000, DISCRETE COMPUT GEOM, V23, P419, DOI 10.1007/s004540010009
[8]  
DRINFELD VG, 1984, FUNCT ANAL APPL+, V18, P245
[9]   ALMOST ALL SUBGROUPS OF A LIE GROUP ARE FREE [J].
EPSTEIN, DBA .
JOURNAL OF ALGEBRA, 1971, 19 (02) :261-&
[10]  
Fisher D, 2006, INT MATH RES NOTICES, V2006