Phase Transitions, Hysteresis, and Hyperbolicity for Self-Organized Alignment Dynamics

被引:60
作者
Degond, Pierre [1 ,2 ]
Frouvelle, Amic [3 ]
Liu, Jian-Guo [4 ,5 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, UTM, UPS,INSA,UT1, F-31062 Toulouse, France
[2] CNRS, UMR 5219, Inst Math Toulouse, F-31062 Toulouse, France
[3] Univ Paris 09, CNRS, UMR 7534, CEREMADE, F-75775 Paris 16, France
[4] Duke Univ, Dept Phys, Durham, NC 27708 USA
[5] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
MEAN-FIELD LIMIT; MACROSCOPIC LIMITS; FLOCKING DYNAMICS; DRIVEN PARTICLES; CONTINUUM-LIMIT; MODEL; SYSTEM; EQUATION; MOTION;
D O I
10.1007/s00205-014-0800-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
引用
收藏
页码:63 / 115
页数:53
相关论文
共 30 条
[1]   ON THE EMERGENCE OF COLLECTIVE ORDER IN SWARMING SYSTEMS: A RECENT DEBATE [J].
Aldana, M. ;
Larralde, H. ;
Vazquez, B. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (18) :3459-3483
[2]  
[Anonymous], SPRINGER LECT NOTES
[3]  
[Anonymous], 1995, PERTURBATION THEORY
[4]   Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis [J].
Bertin, Eric ;
Droz, Michel ;
Gregoire, Guillaume .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (44)
[5]   Mean-field limit for the stochastic Vicsek model [J].
Bolley, Francois ;
Canizo, Jose A. ;
Carrillo, Jose A. .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :339-343
[6]   ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL [J].
Carrillo, J. A. ;
Fornasier, M. ;
Rosado, J. ;
Toscani, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :218-236
[7]   Collective motion of self-propelled particles interacting without cohesion [J].
Chate, Hugues ;
Ginelli, Francesco ;
Gregoire, Guillaume ;
Raynaud, Franck .
PHYSICAL REVIEW E, 2008, 77 (04)
[8]   State transitions and the continuum limit for a 2D interacting, self-propelled particle system [J].
Chuang, Yao-Li ;
D'Orsogna, Maria R. ;
Marthaler, Daniel ;
Bertozzi, Andrea L. ;
Chayes, Lincoln S. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) :33-47
[9]   Asymptotic states of a Smoluchowski equation [J].
Constantin, P ;
Kevrekidis, IG ;
Titi, ES .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 174 (03) :365-384
[10]   Emergent behavior in flocks [J].
Cucker, Felipe ;
Smale, Steve .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (05) :852-862