Fast Assembly of Ordered Block Copolymer Nanostructures through Microwave Annealing

被引:144
作者
Zhang, Xiaojiang [1 ,2 ]
Harris, Kenneth D. [1 ]
Wu, Nathanael L. Y. [1 ,3 ]
Murphy, Jeffrey N. [1 ]
Buriak, Jillian M. [1 ,2 ]
机构
[1] CNR, Natl Inst Nanotechnol, Edmonton, AB T6G 2M9, Canada
[2] Univ Alberta, Dept Chem, Edmonton, AB T6G 2G2, Canada
[3] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2G8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
block copolymer; solvothermal annealing; self assembly; patterning; microwaves; platinum nanostructures; silicon; substrate; graphoepitaxy; ELECTRIC-FIELD; CHEMICAL FUNCTIONALIZATION; NANOLITHOGRAPHY; LITHOGRAPHY; ALIGNMENT; LIMITS; GRAPHOEPITAXY; MECHANISMS; DOMAINS; PATTERN;
D O I
10.1021/nn102387c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Block copolymer self assembly is an innovative technology capable of patterning technologically relevant substrates with nanoscale precision for a range of applications Train integrated circuit fabrication to tissue block copolymer structures The technique Involves the usage of a commercial microwave reactor to anneal block copolymer films in the presence of appropriate solvents, and we explore the effect of various parameters over the polymer assembly speed and defect density The approach Is applied to,the commonly used poly(styrene)-b poly(methyl methacrylate) (PS b PMMA) and poly(styrene) b-poly(2 vinylpyridine) (PS-b-P2VP) families of block copolymers; and it is found that the substrate resistivity, solvent environment, and anneal temperature all critically influence the self assembly process For selected systems, highly ordered patterns Were achieved In lens than 3 min In addition, we establish the technique with directed assembly by graphoepitaxy
引用
收藏
页码:7021 / 7029
页数:9
相关论文
共 60 条
[1]   ALIGNMENT OF LAMELLAR BLOCK-COPOLYMER MICROSTRUCTURE IN AN ELECTRIC-FIELD .2. MECHANISMS OF ALIGNMENT [J].
AMUNDSON, K ;
HELFAND, E ;
QUAN, XN ;
HUDSON, SD ;
SMITH, SD .
MACROMOLECULES, 1994, 27 (22) :6559-6570
[2]  
[Anonymous], 2009, INT TECHN ROADM SEM
[3]  
[Anonymous], 2007, INT TECHN ROADM SEM
[4]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[5]   Block Copolymer Nanolithography: Translation of Molecular Level Control to Nanoscale Patterns [J].
Bang, Joona ;
Jeong, Unyong ;
Ryu, Du Yeol ;
Russell, Thomas P. ;
Hawker, Craig J. .
ADVANCED MATERIALS, 2009, 21 (47) :4769-4792
[6]   Block copolymers - Designer soft materials [J].
Bates, FS ;
Fredrickson, GH .
PHYSICS TODAY, 1999, 52 (02) :32-38
[7]   Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates [J].
Bita, Ion ;
Yang, Joel K. W. ;
Jung, Yeon Sik ;
Ross, Caroline A. ;
Thomas, Edwin L. ;
Berggren, Karl K. .
SCIENCE, 2008, 321 (5891) :939-943
[8]   Polymer self assembly in semiconductor microelectronics [J].
Black, C. T. ;
Ruiz, R. ;
Breyta, G. ;
Cheng, J. Y. ;
Colburn, M. E. ;
Guarini, K. W. ;
Kim, H.-C. ;
Zhang, Y. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2007, 51 (05) :605-633
[9]   Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication [J].
Black, CT ;
Guarini, KW ;
Milkove, KR ;
Baker, SM ;
Russell, TP ;
Tuominen, MT .
APPLIED PHYSICS LETTERS, 2001, 79 (03) :409-411
[10]   Single-grain lamellar microdomain from a diblock copolymer [J].
Bodycomb, J ;
Funaki, Y ;
Kimishima, K ;
Hashimoto, T .
MACROMOLECULES, 1999, 32 (06) :2075-2077