GLOBAL WELL-POSEDNESS AND LARGE TIME BEHAVIOR TO 2D BOUSSINESQ EQUATIONS FOR MHD CONVECTION

被引:1
作者
WANG, S. H. A. S. H. A. [1 ]
XU, WEN-QING [2 ]
LIU, J. I. T. A. O. [3 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
[2] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA
[3] Beijing Univ Technol, Dept Math, Fac Sci, Beijing 100124, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
MHD-Boussinesq equations; global well-posedness; large time behavior; Fourier splitting; BOUNDARY VALUE-PROBLEM; NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS; MAGNETOHYDRODYNAMICS SYSTEM; ASYMPTOTIC-BEHAVIOR; PARTIAL VISCOSITY; REGULARITY; DECAY; CRITERION; MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem for the 2D incompressible MHD-Boussinesq equations without thermal diffusion. We prove the global existence and uniqueness of the solutions for suitably regular initial data. To obtain large time decay properties of the solutions, we insert an artificial thermal damping term. By applying the classical Fourier splitting methods, we derive optimal large time decay rates of the solutions and their first-order derivatives.
引用
收藏
页码:31 / 56
页数:26
相关论文
共 50 条
[1]   Small global solutions to the damped two-dimensional Boussinesq equations [J].
Adhikari, Dhanapati ;
Cao, Chongsheng ;
Wu, Jiahong ;
Xu, Xiaojing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (11) :3594-3613
[2]  
[Anonymous], 1987, Geophysical Fluid Dynamics
[3]  
[Anonymous], 1980, Lecture Notes in Math, DOI DOI 10.1007/BFB0086903
[4]   Initial-boundary value problem to 2D Boussinesq equations for MHD convection with stratification effects [J].
Bian, Dongfen ;
Liu, Jitao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) :8074-8101
[5]   INITIAL BOUNDARY VALUE PROBLEM FOR TWO-DIMENSIONAL VISCOUS BOUSSINESQ EQUATIONS FOR MHD CONVECTION [J].
Bian, Dongfen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (06) :1591-1611
[6]   On 2-D Boussinesq equations for MHD convection with stratification effects [J].
Bian, Dongfen ;
Gui, Guilong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1669-1711
[7]   LARGE TIME DECAY AND GROWTH FOR SOLUTIONS OF A VISCOUS BOUSSINESQ SYSTEM [J].
Brandolese, Lorenzo ;
Schonbek, Maria E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (10) :5057-5090
[8]  
Brezis H., 1980, COMMUN PART DIFF EQ, V5, P773
[9]   Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion [J].
Cao, Chongsheng ;
Wu, Jiahong .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1803-1822
[10]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513