Deep learning and colon capsule endoscopy: automatic detection of blood and colonic mucosal lesions using a convolutional neural network

被引:29
作者
Mascarenhas, Miguel [1 ,2 ,3 ]
Ribeiro, Tiago [1 ,2 ]
Afonso, Joao [1 ,2 ]
Ferreira, Joao P. S. [4 ,5 ]
Cardoso, Helder [1 ,2 ,3 ]
Andrade, Patricia [1 ,2 ,3 ]
Parente, Marco P. L. [4 ,5 ]
Jorge, Renato N. [4 ,5 ]
Saraiva, Miguel Mascarenhas [6 ]
Macedo, Guilherme [1 ,2 ,3 ]
机构
[1] Sao Joao Univ Hosp, Dept Gastroenterol, Porto, Portugal
[2] WGO Gastroenterol & Hepatol Training Ctr, Porto, Portugal
[3] Univ Porto, Fac Med, Porto, Portugal
[4] Univ Porto, Fac Engn, Dept Mech Engn, Porto, Portugal
[5] INEGI Inst Sci & Innovat Mech & Ind Engn, Porto, Portugal
[6] ManopH Gastroenterol Clin, Porto, Portugal
关键词
PILLCAM COLON; ULCERATIVE-COLITIS; COLONOSCOPY; CLASSIFICATION; MULTICENTER; PATHOLOGY; CANCER; SYSTEM;
D O I
10.1055/a-1675-1941
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and study aims Colon capsule endoscopy (CCE) is a minimally invasive alternative to conventional colonoscopy. However, CCE produces long videos, making its analysis time-consuming and prone to errors. Convolutional neural networks (CNN) are artificial intelligence (AI) algorithms with high performance levels in image analysis. We aimed to develop a deep learning model for automatic identification and differentiation of significant colonic mucosal lesions and blood in CCE images. Patients and methods A retrospective multicenter study including 124 CCE examinations was conducted for development of a CNN model, using a database of CCE images including anonymized images of patients with normal colon mucosa, several mucosal lesions (erosions, ulcers, vascular lesions and protruding lesions) and luminal blood. For CNN development, 9005 images (3,075 normal mucosa, 3,115 blood and 2,815 mucosal lesions) were ultimately extracted. Two image datasets were created and used for CNN training and validation. Results The mean (standard deviation) sensitivity and specificity of the CNN were 96.3 % (3.9 %) and 98.2 % (1.8 %) Mucosal lesions were detected with a sensitivity of 92.0 % and a specificity of 98.5 %. Blood was detected with a sensitivity and specificity of 97.2 % and 99.9 %, respectively. The algorithm was 99.2 % sensitive and 99.6 % specific in distinguishing blood from mucosal lesions. The CNN processed 65 frames per second. Conclusions This is the first CNN-based algorithm to accurately detect and distinguish colonic mucosal lesions and luminal blood in CCE images. AI may improve diagnostic and time efficiency of CCE exams, thus facilitating CCE adoption to routine clinical practice.
引用
收藏
页码:E171 / E177
页数:7
相关论文
共 34 条
[1]   Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Aoyama, Kazuharu ;
Saito, Hiroaki ;
Fujisawa, Gota ;
Odawara, Nariaki ;
Kondo, Ryo ;
Tsuboi, Akiyoshi ;
Ishibashi, Rei ;
Nakada, Ayako ;
Niikura, Ryota ;
Fujishiro, Mitsuhiro ;
Oka, Shiro ;
Ishihara, Soichiro ;
Matsuda, Tomoki ;
Nakahori, Masato ;
Tanaka, Shinji ;
Koike, Kazuhiko ;
Tada, Tomohiro .
DIGESTIVE ENDOSCOPY, 2020, 32 (04) :585-591
[2]   Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Kato, Yusuke ;
Saito, Hiroaki ;
Tsuboi, Akiyoshi ;
Nakada, Ayako ;
Niikura, Ryota ;
Fujishiro, Mitsuhiro ;
Oka, Shiro ;
Ishihara, Soichiro ;
Matsuda, Tomoki ;
Nakahori, Masato ;
Tanaka, Shinji ;
Koike, Kazuhiko ;
Tada, Tomohiro .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2020, 35 (07) :1196-1200
[3]   Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network [J].
Aoki, Tomonori ;
Yamada, Atsuo ;
Aoyama, Kazuharu ;
Saito, Hiroaki ;
Tsuboi, Akiyoshi ;
Nakada, Ayako ;
Niikura, Ryota ;
Fujishiro, Mitsuhiro ;
Oka, Shiro ;
Ishihara, Soichiro ;
Matsuda, Tomoki ;
Tanaka, Shinji ;
Koike, Kazuhiko ;
Tada, Tomohiro .
GASTROINTESTINAL ENDOSCOPY, 2019, 89 (02) :357-+
[4]   Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning [J].
Blanes-Vidal, Victoria ;
Baatrup, Gunnar ;
Nadimi, Esmaeil S. .
ACTA ONCOLOGICA, 2019, 58 :S29-S36
[5]   Multicentre, prospective, randomised study comparing the diagnostic yield of colon capsule endoscopy versus CT colonography in a screening population (the TOPAZ study) [J].
Cash, Brooks D. ;
Fleisher, Mark R. ;
Fern, Steven ;
Rajan, Elizabeth ;
Haithcock, Robyn ;
Kastenberg, David M. ;
Pound, David ;
Papageorgiou, Neofytos P. ;
Fernandez-Urien, Ignacio ;
Schmelkin, Ira J. ;
Rex, Douglas K. .
GUT, 2021, 70 (11) :2115-2122
[6]   Safety and Feasibility of Using the Second-Generation Pillcam Colon Capsule to Assess Active Colonic Crohn's Disease [J].
D'Haens, Geert ;
Lowenberg, Mark ;
Samaan, Mark A. ;
Franchimont, Denis ;
Ponsioen, Cyriel ;
van den Brink, Gijs R. ;
Fockens, Paul ;
Bossuyt, Peter ;
Amininejad, Leila ;
Rajamannar, Gopalan ;
Lensink, Elsemieke M. ;
Van Gossum, Andre M. .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2015, 13 (08) :1480-+
[7]   Evaluation of the PillCam Colon capsule in the detection of colonic pathology: results of the first multicenter, prospective, comparative study [J].
Eliakim, R. ;
Fireman, Z. ;
Gralnek, I. M. ;
Yassin, K. ;
Waterman, M. ;
Kopelman, Y. ;
Lachter, J. ;
Koslowsky, B. ;
Adler, S. N. .
ENDOSCOPY, 2006, 38 (10) :963-970
[8]   Prospective multicenter performance evaluation of the second-generation colon capsule compared with colonoscopy [J].
Eliakim, R. ;
Yassin, K. ;
Niv, Y. ;
Metzger, Y. ;
Lachter, J. ;
Gal, E. ;
Sapoznikov, B. ;
Konikoff, F. ;
Leichtmann, G. ;
Fireman, Z. ;
Kopelman, Y. ;
Adler, S. N. .
ENDOSCOPY, 2009, 41 (12) :1026-1031
[9]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[10]   Automated Identification of Diabetic Retinopathy Using Deep Learning [J].
Gargeya, Rishab ;
Leng, Theodore .
OPHTHALMOLOGY, 2017, 124 (07) :962-969