Chaos Suppression in a Gompertz-like Discrete System of Fractional Order

被引:2
作者
Danca, Marius-F [1 ]
Feckan, Michal [2 ,3 ]
机构
[1] Avram Iancu Univ Cluj Napoca, Dept Math & Comp Sci, Cluj Napoca, Romania
[2] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[3] Slovak Acad Sci, Math Inst, Bratislava, Slovakia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2020年 / 30卷 / 03期
关键词
Discrete fractional order system; Gompertz-like system; chaos suppression;
D O I
10.1142/S0218127420500492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the fractional-order variant of a Gompertz-like discrete system. The chaotic behavior is suppressed with an impulsive control algorithm. The numerical integration and the Lyapunov exponent are obtained by means of the discrete fractional calculus. To verify numerically the obtained results, beside the Lyapunov exponent, the tools offered by the 0-1 test are used.
引用
收藏
页数:12
相关论文
共 22 条
[1]   FRACTALS AND CHAOS IN CANCER MODELS [J].
AHMED, E .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (02) :353-355
[2]   Suppression of chaos in a one-dimensional mapping [J].
Codreanu, S ;
Danca, M .
JOURNAL OF BIOLOGICAL PHYSICS, 1997, 23 (01) :1-9
[3]   Fractional-order PWC systems without zero Lyapunov exponents [J].
Danca, Marius-F. ;
Feckan, Michal ;
Kuznetsov, Nikolay V. ;
Chen, Guanrong .
NONLINEAR DYNAMICS, 2018, 92 (03) :1061-1078
[4]   Suppressing chaos in a simplest autonomous memristor-based circuit of fractional order by periodic impulses [J].
Danca, Marius-F. ;
Tang, Wallace K. S. ;
Chen, Guanrong .
CHAOS SOLITONS & FRACTALS, 2016, 84 :31-40
[5]   Suppressing chaos in discontinuous systems of fractional order by active control [J].
Danca, Marius-F. ;
Garrappa, Roberto .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :89-102
[6]   Chaos suppression via periodic change of variables in a class of discontinuous dynamical systems of fractional order [J].
Danca, Marius-F .
NONLINEAR DYNAMICS, 2012, 70 (01) :815-823
[7]   Controlling chaos in discontinuous dynamical systems [J].
Danca, MF .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :605-612
[8]   Nonexistence of periodic solutions and S-asymptotically periodic solutions in fractional difference equations [J].
Diblik, J. ;
Feckan, M. ;
Pospisil, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :230-240
[9]  
Feckan M, 2014, ELECTRON J QUAL THEO, P1
[10]  
Gompertz B., 1825, Philos. Trans. R. Soc. Lond, P513, DOI DOI 10.1098/RSTL.1825.0026