Statistics of closest return for some non-uniformly hyperbolic systems

被引:92
作者
Collet, P [1 ]
机构
[1] Ecole Polytech, CNRS, UMR 7644, Ctr Phys Theor, F-91128 Palaiseau, France
关键词
D O I
10.1017/S0143385701001201
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For non-uniformly hyperbolic maps of the interval with exponential decay of correlations we prove that the law of closest return to a given point when suitably normalized is almost surely asymptotically exponential. A similar result holds when the reference point is the initial point of the trajectory. We use the framework for nonuniformly hyperbolic dynamical systems developed by L. S. Young.
引用
收藏
页码:401 / 420
页数:20
相关论文
共 17 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]  
Baladi V, 1996, ANN SCI ECOLE NORM S, V29, P483
[3]   Repetition times for Gibbsian sources [J].
Collet, P ;
Galves, A ;
Schmitt, B .
NONLINEARITY, 1999, 12 (04) :1225-1237
[4]  
COLLET P, 1999, REMARK DECORRELATION
[5]  
Galambos J., 1978, The asymptotic theory of extreme order statistics
[6]  
Galves A, 1997, RANDOM COMPUT DYN, V5, P337
[7]   SPECTRAL THEORY, ZETA-FUNCTIONS AND THE DISTRIBUTION OF PERIODIC POINTS FOR COLLET ECKMANN MAPS [J].
KELLER, G ;
NOWICKI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (01) :31-69
[8]   Asymptotic recurrence and waiting times for stationary processes [J].
Kontoyiannis, I .
JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (03) :795-811
[9]  
PACCAUT F, 1999, 169 U BOURG DPT MATH
[10]  
Pesin Y.B., 1997, DIMENSION THEORY DYN