Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution

被引:92
|
作者
Wang, F. Z. [1 ]
Zheng, M. J. [1 ,2 ]
Zhang, B. [1 ]
Zhu, C. Q. [1 ]
Li, Q. [1 ]
Ma, L. [3 ]
Shen, W. Z. [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Phys & Astron, Minist Educ, Key Lab Artificial Struct & Quantum Control, Shanghai 200240, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, Shanghai 200240, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
ACTIVE EDGE SITES; SELF-ASSEMBLED NANOSHEETS; ULTRATHIN NANOSHEETS; MOLYBDENUM SULFIDES; NICKEL PHOSPHIDE; LITHIUM STORAGE; GRAPHENE OXIDE; PERFORMANCE; CATALYST; NANOPARTICLES;
D O I
10.1038/srep31092
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ammonia intercalated flower-like MoS2 electrocatalyst film assembled by vertical orientated ultrathin nanosheet on graphite sheethas been successfully synthesized using one-step hydrothermal method. In this strategy, ammonia can effectively insert into the parallel plane of the MoS2 nanosheets, leading to the expansion of lattice and phase transfer from 2H to 1T, generating more active unsaturated sulfur atoms. The flower-like ammoniated MoS2 electrocatalysts with more active sites and large surface area exhibited excellent HER activity with a small Tafel slope and low onset overpotential, resulting a great enhancement in hydrogen evolution. The high efficient activity and recyclable utilization, as well as large-scale, indicate that it is a very promising electrocatalyst to replace Pt in industry application.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Flower-like MoS2 microspheres compounded with irregular CdS pyramid heterojunctions: highly efficient and stable photocatalysts for hydrogen production from water
    He, Kai
    Guo, Liejin
    RSC ADVANCES, 2021, 11 (37) : 23064 - 23072
  • [22] Enhanced Fe(III)/PMS system by flower-like MoS2 nanosheet for rapid degradation of tetracycline
    Yan, Zelong
    He, Fang
    Zhang, Jiyu
    Fang, Jieru
    Wang, Jingjing
    Zhou, Haihong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (06):
  • [23] Flower-like 1T-MoS2/NiCo2S4 on a carbon cloth substrate as an efficient electrocatalyst for the hydrogen evolution reaction
    Zheng, Meng
    Chen, Qianqiao
    Zhong, Qin
    DALTON TRANSACTIONS, 2021, 50 (38) : 13320 - 13328
  • [24] FACILE SYNTHESIS AND CHARACTERIZATION OF FLOWER-LIKE MoS2 MICROSPHERES
    Xu, J.
    Tang, H.
    Tang, G.
    Li, C.
    CHALCOGENIDE LETTERS, 2014, 11 (06): : 265 - 270
  • [25] Synthesis and tribological properties of flower-like MoS2 microspheres
    Tang, Guogang
    Zhang, Jing
    Liu, Changchao
    Zhang, Du
    Wang, Yuqi
    Tang, Hua
    Li, Changsheng
    CERAMICS INTERNATIONAL, 2014, 40 (08) : 11575 - 11580
  • [26] Flower-like MoS2 nanoparticles:: Solvothermal synthesis and characterization
    Sun Yan-Li
    Wang Shi-Ming
    Wang Qiong-Sheng
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2008, 24 (06) : 1003 - 1006
  • [27] SYNTHESIS AND TRIBOLOGICAL PROPERTIES OF FLOWER-LIKE MoS2 NANOSTRUCTURES
    Xu, J.
    Tang, H.
    Zhang, K.
    Zhang, H.
    Li, C.
    JOURNAL OF NON-OXIDE GLASSES, 2014, 6 (03): : 53 - 60
  • [28] PVP Functionalized Marigold-like MoS2 as a New Electrocatalyst for Highly Efficient Electrochemical Hydrogen Evolution
    Weili Wang
    Bingqing Qiu
    Chenxi Li
    Xiaqiang Shen
    Jing Tang
    Yi Li
    Guokun Liu
    Electrocatalysis, 2020, 11 : 383 - 392
  • [29] Synthesis of flower-like MoS2nanosheet microspheres by hydrothermal method
    Feng, Gui-Bing
    Wei, Ai-Xiang
    Zhao, Yu
    Liu, Jun
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2015, 44 (10): : 2852 - 2857
  • [30] MoS2 nanosheet decorated with trace loads of Pt as highly active electrocatalyst for hydrogen evolution reaction
    Luo, Yanping
    Huang, Dekang
    Li, Man
    Xiao, Xin
    Shi, Weina
    Wang, Mingkui
    Su, Jun
    Shen, Yan
    ELECTROCHIMICA ACTA, 2016, 219 : 187 - 193