Ammonia intercalated flower-like MoS2 nanosheet film as electrocatalyst for high efficient and stable hydrogen evolution

被引:92
|
作者
Wang, F. Z. [1 ]
Zheng, M. J. [1 ,2 ]
Zhang, B. [1 ]
Zhu, C. Q. [1 ]
Li, Q. [1 ]
Ma, L. [3 ]
Shen, W. Z. [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Phys & Astron, Minist Educ, Key Lab Artificial Struct & Quantum Control, Shanghai 200240, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Chem & Chem Technol, Shanghai 200240, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
ACTIVE EDGE SITES; SELF-ASSEMBLED NANOSHEETS; ULTRATHIN NANOSHEETS; MOLYBDENUM SULFIDES; NICKEL PHOSPHIDE; LITHIUM STORAGE; GRAPHENE OXIDE; PERFORMANCE; CATALYST; NANOPARTICLES;
D O I
10.1038/srep31092
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ammonia intercalated flower-like MoS2 electrocatalyst film assembled by vertical orientated ultrathin nanosheet on graphite sheethas been successfully synthesized using one-step hydrothermal method. In this strategy, ammonia can effectively insert into the parallel plane of the MoS2 nanosheets, leading to the expansion of lattice and phase transfer from 2H to 1T, generating more active unsaturated sulfur atoms. The flower-like ammoniated MoS2 electrocatalysts with more active sites and large surface area exhibited excellent HER activity with a small Tafel slope and low onset overpotential, resulting a great enhancement in hydrogen evolution. The high efficient activity and recyclable utilization, as well as large-scale, indicate that it is a very promising electrocatalyst to replace Pt in industry application.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Three-Dimensional Heterostructures of MoS2 Nanosheets on Conducting MoO2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction
    Nikam, Revannath Dnyandeo
    Lu, Ang-Yu
    Sonawane, Poonarn Ashok
    Kumar, U. Rajesh
    Yadav, Kanchan
    Li, Lain-Jong
    Chen, Yit-Tsong
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (41) : 23328 - 23335
  • [22] Flower-like 1T-MoS2/NiCo2S4 on a carbon cloth substrate as an efficient electrocatalyst for the hydrogen evolution reaction
    Zheng, Meng
    Chen, Qianqiao
    Zhong, Qin
    DALTON TRANSACTIONS, 2021, 50 (38) : 13320 - 13328
  • [23] Flower-like MoS2 microspheres compounded with irregular CdS pyramid heterojunctions: highly efficient and stable photocatalysts for hydrogen production from water
    He, Kai
    Guo, Liejin
    RSC ADVANCES, 2021, 11 (37) : 23064 - 23072
  • [24] CoS2 Nanoparticles-Decorated MoS2/rGO Nanosheets as An Efficient Electrocatalyst for Ultrafast Hydrogen Evolution
    Khan, Habib
    Shah, Sayyar Ali
    Rehman, Wasif Ur
    Chen, Fei
    ADVANCED MATERIALS INTERFACES, 2022, 9 (01)
  • [25] Synthesis and tribological properties of flower-like MoS2 microspheres
    Tang, Guogang
    Zhang, Jing
    Liu, Changchao
    Zhang, Du
    Wang, Yuqi
    Tang, Hua
    Li, Changsheng
    CERAMICS INTERNATIONAL, 2014, 40 (08) : 11575 - 11580
  • [26] Rational design of MoS2 nanosheet/MoS2 nanowire homostructures and their enhanced hydrogen evolution reaction
    Yang, L.
    Yuan, X. Q.
    Liu, R. Y.
    Song, R. X.
    Wang, Q. W.
    Liang, W.
    CHALCOGENIDE LETTERS, 2023, 20 (09): : 639 - 648
  • [27] Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction
    Shaker, Tayebeh
    Mehdipour, Hamid
    Moshfegh, Alireza Z.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (03) : 1579 - 1588
  • [28] Vertically Grown MoS2 Nanoplates on VN with an Enlarged Surface Area as an Efficient and Stable Electrocatalyst for HER
    Meng, Kai
    Wen, Shuxian
    Liu, Lujing
    Jia, Zhijun
    Wang, Yi
    Shao, Zhigang
    Qi, Tao
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (04) : 2854 - 2861
  • [29] Three-dimensional flower-like NiS2/MoS2 assembly of randomly oriented nanoplate for enhanced hydrogen evolution reaction
    Kim, Jiwon
    Choi, Hyung Wook
    Jeong, Dong In
    Lee, Ui Young
    Kumar, Mohit
    Kang, Bong Kyun
    Yoon, Dae Ho
    CURRENT APPLIED PHYSICS, 2022, 43 : 130 - 137
  • [30] Efficient and scalable preparation of MoS2 nanosheet/carbon nanotube composites for hydrogen evolution reaction
    Li, Yuewei
    Yin, Xianglu
    Huang, Xiaohui
    Liu, Xiaolin
    Wu, Wei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (33) : 16489 - 16499