Impacts of Variations in Caspian Sea Surface Area on Catchment-Scale and Large-Scale Climate

被引:19
作者
Koriche, Sifan A. [1 ,2 ,3 ,4 ]
Nandini-Weiss, Sri D. [5 ,6 ]
Prange, Matthias [5 ]
Singarayer, Joy S. [1 ]
Arpe, Klaus [7 ]
Cloke, Hannah L. [1 ,8 ,9 ,10 ]
Schulz, Michael [5 ]
Bakker, Pepijn [11 ]
Leroy, Suzanne A. G. [12 ,13 ]
Coe, Michael [14 ]
机构
[1] Univ Reading, Dept Meteorol, Reading, Berks, England
[2] Jimma Univ, Sch Civil & Environm Engn, JiT, Jimma, Oromiyaa, Ethiopia
[3] Baylor Univ, Dept Geosci, Waco, TX 76798 USA
[4] Univ Texas Austin, Jackson Sch Geosci, Austin, TX 78712 USA
[5] Univ Bremen, MARUM Ctr Marine Environm Sci, Bremen, Germany
[6] Univ Hamburg, Inst Oceanog, Ctr Earth Syst Res & Sustainabil CEN, Hamburg, Sweden
[7] Max Planck Inst Meteorol, Hamburg, Germany
[8] Univ Reading, Dept Geog & Environm Sci, Reading, Berks, England
[9] Uppsala Univ, Dept Earth Sci, Uppsala, Sweden
[10] CNDS, Ctr Nat Hazards & Disaster Sci, Uppsala, Sweden
[11] Vrije Univ Amsterdam, Dept Earth Sci, Amsterdam, Netherlands
[12] Aix Marseille Univ, CNRS, Aix En Provence, France
[13] Univ Liverpool, Sch Environm Sci, Liverpool, Merseyside, England
[14] Woodwell Climate Res Ctr, Falmouth, MA USA
基金
英国自然环境研究理事会;
关键词
Caspian Sea; CESM1; 2; model; evaporation; precipitation; subtropical jet; LAURENTIAN GREAT-LAKES; LEVEL; CIRCULATION; FEEDBACKS; CONSEQUENCES; VARIABILITY; SIMULATION; EVOLUTION; REGION; MODEL;
D O I
10.1029/2020JD034251
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Caspian Sea (CS) is the largest inland lake in the world. Large variations in sea level and surface area occurred in the past and are projected for the future. The potential impacts on regional and large-scale hydroclimate are not well understood. Here, we examine the impact of CS area on climate within its catchment and across the northern hemisphere, for the first time with a fully coupled climate model. The Community Earth System Model (CESM1.2.2) is used to simulate the climate of four scenarios: (a) larger than present CS area, (b) current area, (c) smaller than present area, and (d) no-CS scenario. The results reveal large changes in the regional atmospheric water budget. Evaporation (e) over the sea increases with increasing area, while precipitation (P) increases over the south-west CS with increasing area. P-E over the CS catchment decreases as CS surface area increases, indicating a dominant negative lake-evaporation feedback. A larger CS reduces summer surface air temperatures and increases winter temperatures. The impacts extend eastwards, where summer precipitation is enhanced over central Asia and the north-western Pacific experiences warming with reduced winter sea ice. Our results also indicate weakening of the 500-hPa troughs over the northern Pacific with larger CS area. We find a thermal response triggers a southward shift of the upper troposphere jet stream during summer. Our findings establish that changing CS area results in climate impacts of such scope that CS area variations should be incorporated into climate model simulations, including palaeo and future scenarios.
引用
收藏
页数:17
相关论文
共 47 条
[1]  
Abhishek Lodh Abhishek Lodh, 2015, Hydrology: Current Research, V6, P217
[2]  
Amante C., 2009, NOAA TECHNICAL MEMOR, P19, DOI DOI 10.7289/V5C8276M
[3]   The Caspian Sea Level forced by the atmospheric circulation, as observed and modelled [J].
Arpe, Klaus ;
Leroy, Suzanne A. G. .
QUATERNARY INTERNATIONAL, 2007, 173 :144-152
[4]   Wind variability over the Caspian Sea, its impact on Caspian seawater level and link withENSO [J].
Arpe, Klaus ;
Molavi-Arabshahi, Mahboubeh ;
Leroy, Suzanne Alice Ghislaine .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2020, 40 (14) :6039-6054
[5]   Quantification of climatic feedbacks on the Caspian Sea level variability and impacts from the Caspian Sea on the large-scale atmospheric circulation [J].
Arpe, Klaus ;
Tsuang, Ben-Jei ;
Tseng, Yu-Heng ;
Liu, Xin-Yu ;
Leroy, Suzanne A. G. .
THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 136 (1-2) :475-488
[6]   On the age of the Khvalynian deposits of the Caspian Sea coasts according to 14C and 230Th/234U methods [J].
Arslanov, Kh. A. ;
Yanina, T. A. ;
Chepalyga, A. L. ;
Svitoch, A. A. ;
Makshaev, R. R. ;
Maksimov, F. E. ;
Chernov, S. B. ;
Tertychniy, N. I. ;
Starikova, A. A. .
QUATERNARY INTERNATIONAL, 2016, 409 :81-87
[7]   Caspian sea-level changes during the last millennium: historical and geological evidence from the south Caspian Sea [J].
Beni, A. Naderi ;
Lahijani, H. ;
Harami, R. Mousavi ;
Arpe, K. ;
Leroy, S. A. G. ;
Marriner, N. ;
Berberian, M. ;
Andrieu-Ponel, V. ;
Djamali, M. ;
Mahboubi, A. ;
Reimer, P. J. .
CLIMATE OF THE PAST, 2013, 9 (04) :1645-1665
[8]   The Northern Caspian Sea: Consequences of climate change for level fluctuations during the Holocene [J].
Bezrodnykh, Yu ;
Yanina, T. ;
Sorokin, V ;
Romanyuk, B. .
QUATERNARY INTERNATIONAL, 2020, 540 :68-77
[9]   Land surface feedbacks and palaeomonsoons in northern Africa [J].
Brostrom, A ;
Coe, M ;
Harrison, SP ;
Gallimore, R ;
Kutzbach, JE ;
Foley, J ;
Prentice, IC ;
Behling, P .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (19) :3615-3618
[10]   Using the Koppen classification to quantify climate variation and change: An example for 1901-2010 [J].
Chen, Deliang ;
Chen, Hans Weiteng .
ENVIRONMENTAL DEVELOPMENT, 2013, 6 :69-79