High Cycle Stability of Nanoporous Si Composites in All-solid-state Lithium-ion Batteries

被引:11
作者
Okuno, Ryota [1 ]
Yamamoto, Mari [1 ,2 ]
Kato, Atsutaka [1 ,2 ]
Takahashi, Masanari [1 ,2 ]
机构
[1] Nara Inst Sci & Technol, 8916-5 Takayama Cho, Ikoma, Nara 6300192, Japan
[2] Osaka Res Inst Ind Sci & Technol, Joto Ku, 1-6-50 Morinomiya, Osaka 5368553, Japan
关键词
HIGH-PERFORMANCE ANODE; ACTIVE MATERIAL; SILICON; CARBON; NANOTUBES; ELECTRODE; CAPACITY; ARRAY;
D O I
10.1149/1945-7111/ac81f6
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Stress relaxation of Si with large structural fluctuations is a critical challenge for its practical application in lithium-ion batteries (LIBs). In this study, nanoporous Si particles, which are prepared by Mg2Si reduction of mesoporous SiO2 spheres, are applied as an anode active material for all-solid-state LIBs (ASSLIBs) with a Li3PS4 solid electrolyte. Nanoporous Si half-cells exhibit an excellent cyclability with a high-capacity retention of about 90% at 50 cycles compared to non-porous Si half-cells below 20%. The cross-sectional characteristics of nanoporous and non-porous Si composite anodes are accurately compared using electrochemical impedance spectroscopy and field emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy. Based on these results, we conclude that the expansion/contraction of nanosized Si pores and the elastic deformation of Li3PS4 effectively relieve the structural stress derived from the volume change of Si particles/aggregates during lithiation and delithiation, resulting in high cycle stability. These findings provide valuable information for the rational design of Si-based anodes for high-performance ASSLIBs.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Silicon nanowire anode: Improved battery life with capacity-limited cycling [J].
Chakrapani, Vidhya ;
Rusli, Florencia ;
Filler, Michael A. ;
Kohl, Paul A. .
JOURNAL OF POWER SOURCES, 2012, 205 :433-438
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode [J].
Chen, Song ;
Chen, Zhuo ;
Xu, Xingyan ;
Cao, Chuanbao ;
Xia, Min ;
Luo, Yunjun .
SMALL, 2018, 14 (12)
[4]   The effect of metal silicide formation on silicon nanowire-based lithium-ion battery anode capacity [J].
Cho, Jeong-Hyun ;
Li, Xianglong ;
Picraux, S. Tom .
JOURNAL OF POWER SOURCES, 2012, 205 :467-473
[5]   Rational Design of Void-Involved Si@TiO2 Nanospheres as High-Performance Anode Material for Lithium-Ion Batteries [J].
Fang, Shan ;
Shen, Laifa ;
Xu, Guiyin ;
Nie, Ping ;
Wang, Jie ;
Dou, Hui ;
Zhang, Xiaogang .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (09) :6497-6503
[6]   A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres [J].
Fang, Xiaoliang ;
Chen, Cheng ;
Liu, Zhaohui ;
Liu, Pengxin ;
Zheng, Nanfeng .
NANOSCALE, 2011, 3 (04) :1632-1639
[7]   Electronic Origin for the Phase Transition from Amorphous LixSi to Crystalline Li15Si4 [J].
Gu, Meng ;
Wang, Zhiguo ;
Connell, Justin G. ;
Perea, Daniel E. ;
Lauhon, Lincoln J. ;
Gao, Fei ;
Wang, Chongmin .
ACS NANO, 2013, 7 (07) :6303-6309
[8]   Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries [J].
Guo, Bingkun ;
Shu, Jie ;
Wang, Zhaoxiang ;
Yang, Hong ;
Shi, Lihong ;
Liu, Yinong ;
Chen, Liquan .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1876-1878
[9]   Tunable Synthesis of Yolk-Shell Porous Silicon@Carbon for Optimizing Si/C-Based Anode of Lithium-Ion Batteries [J].
Guo, Sichang ;
Hu, Xiang ;
Hou, Yang ;
Wen, Zhenhai .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) :42084-42092
[10]   Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries [J].
Han, Xiang ;
Zhou, Weijun ;
Chen, Minfeng ;
Chen, Jizhang ;
Wang, Guanwen ;
Liu, Bo ;
Luo, Linshan ;
Chen, Songyan ;
Zhang, Qiaobao ;
Shi, Siqi ;
Wong, Ching-Ping .
JOURNAL OF ENERGY CHEMISTRY, 2022, 67 :727-735