Chemically Activated Covalent Triazine Frameworks with Enhanced Textural Properties for High Capacity Gas Storage

被引:73
作者
Lee, Yoon Jeong [1 ]
Talapaneni, Siddulu Naidu [1 ]
Coskun, Ali [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Grad Sch Energy Environm Water & Sustainabil EEWS, Daejeon 34141, South Korea
[2] Univ Fribourg, Dept Chem, CH-1700 Fribourg, Switzerland
基金
新加坡国家研究基金会;
关键词
pore narrowing ionothermal synthesis; H-2; storage; porous organic polymers; CO2; capture; CARBON-DIOXIDE CAPTURE; POROUS POLYMER NETWORKS; ORGANIC FRAMEWORKS; HYDROGEN STORAGE; SURFACE-AREA; ELEMENTAL-SULFUR; FACILE SYNTHESIS; TEMPERATURE; CATALYSTS; METHANE;
D O I
10.1021/acsami.7b08930
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Chemical activation of porous/nonporous materials to achieve high surface area sorbents with enhanced textural properties is a very promising strategy. The chemical activation using KOH, however, could lead to broad distribution of pores originating from the simultaneous pore deepening and widening pathways. Accordingly, establishing correlation between the chemical/textural properties of starting porous/nonporous materials and various pore formation mechanisms is quite critical to realize superior porosity and gas uptake properties. Here,, we show that the chemical and textural properties of starting porous organic polymers, that is, covalent triazine frameworks (CTF), have profound effect on the resulting porosity of the frameworks. The chemical activation of microporous CTF-1 using KOH at 700 degrees C enabled the preparation of chemically activated CTF-1, caCTF-1-700, which predominantly showed pore deepening, leading to an increased surface area of 2367 m(2) g(-1) and significantly enhanced gas adsorption properties with CO2 uptake capacities up to 6.0 mmol g(-1) at 1 bar and 1.45 mmol g(-1) at 0.15 bar and 273 K along with a isosteric heats of adsorption (Q(st)) of 30.6 kJ mol(-1). In addition, a remarkable H-2 uptake capacity of 2.46 and 1.66 wt % at 77 and 87 K, 1 bar along with the Q(st) value of 10.95 kJ mol-1 at zero coverage was also observed for the caCTF-1-700. Notably, the activation of mesoporous CTF-2 under the same conditions was accompanied by a decrease in its surface area and also in the conversion of mesopores into the micropores, thus leading to a pore deepening/narrowing rather than widening. We attributed this result to the presence of reactive weak spots, triazine moieties, for the chemical activation reaction within the CTF backbone. These results collectively suggest the critical role of chemical and pore characteristics of porous organic polymers in chemical activation to realize solid-sorbents for high capacity gas storage applications.
引用
收藏
页码:30679 / 30685
页数:7
相关论文
共 66 条
[1]   Synthesis and evaluation of porous azo-linked polymers for carbon dioxide capture and separation [J].
Arab, Pezhman ;
Parrish, Emily ;
Islamoglu, Timur ;
El-Kaderi, Hani M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) :20586-20594
[2]   Exceptional Gas Adsorption Properties by Nitrogen-Doped Porous Carbons Derived from Benzimidazole-Linked Polymers [J].
Ashourirad, Babak ;
Sekizkardes, Ali Kemal ;
Altarawneh, Suha ;
El-Kaderi, Hani M. .
CHEMISTRY OF MATERIALS, 2015, 27 (04) :1349-1358
[3]   Recent Advances in Two-Dimensional Materials beyond Graphene [J].
Bhimanapati, Ganesh R. ;
Lin, Zhong ;
Meunier, Vincent ;
Jung, Yeonwoong ;
Cha, Judy ;
Das, Saptarshi ;
Xiao, Di ;
Son, Youngwoo ;
Strano, Michael S. ;
Cooper, Valentino R. ;
Liang, Liangbo ;
Louie, Steven G. ;
Ringe, Emilie ;
Zhou, Wu ;
Kim, Steve S. ;
Naik, Rajesh R. ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Xia, Fengnian ;
Wang, Yeliang ;
Zhu, Jun ;
Akinwande, Deji ;
Alem, Nasim ;
Schuller, Jon A. ;
Schaak, Raymond E. ;
Terrones, Mauricio ;
Robinson, Joshua A. .
ACS NANO, 2015, 9 (12) :11509-11539
[4]   Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity [J].
Bojdys, Michael J. ;
Jeromenok, Jekaterina ;
Thomas, Arne ;
Antonietti, Markus .
ADVANCED MATERIALS, 2010, 22 (19) :2202-+
[5]   Thinking Outside the Cage: Controlling the Extrinsic Porosity and Gas Uptake Properties of Shape-Persistent Molecular Cages in Nanoporous Polymers [J].
Buyukcakir, Onur ;
Seo, Yongbeom ;
Coskun, Ali .
CHEMISTRY OF MATERIALS, 2015, 27 (11) :4149-4155
[6]   Triazine-Based Polymers as Nanostructured Supports for the Liquid-Phase Oxidation of Alcohols [J].
Chan-Thaw, Carine E. ;
Villa, Alberto ;
Prati, Laura ;
Thomas, Arne .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (03) :1052-1057
[7]   Covalent Triazine Framework as Catalytic Support for Liquid Phase Reaction [J].
Chan-Thaw, Carine E. ;
Villa, Alberto ;
Katekomol, Phisan ;
Su, Dangsheng ;
Thomas, Arne ;
Prati, Laura .
NANO LETTERS, 2010, 10 (02) :537-541
[8]   Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources [J].
Choi, Sunho ;
Drese, Jeffrey H. ;
Jones, Christopher W. .
CHEMSUSCHEM, 2009, 2 (09) :796-854
[9]   Carbon Dioxide Capture: Prospects for New Materials [J].
D'Alessandro, Deanna M. ;
Smit, Berend ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (35) :6058-6082
[10]   Microporous organic polymers for carbon dioxide capture [J].
Dawson, Robert ;
Stoeckel, Ev ;
Holst, James R. ;
Adams, Dave J. ;
Cooper, Andrew I. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4239-4245