Constraints on the quantum gravity scale from κ-Minkowski spacetime

被引:53
作者
Borowiec, A. [1 ]
Gupta, Kumar S. [2 ]
Meljanac, S. [3 ]
Pachol, A. [1 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, PL-50204 Wroclaw, Poland
[2] Saha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India
[3] Rudjer Boskovic Inst, HR-10002 Zagreb, Croatia
关键词
DIFFERENTIAL STRUCTURE; POINCARE GROUP; RELATIVITY; ALGEBRA; TESTS; TIME;
D O I
10.1209/0295-5075/92/20006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compare two versions of deformed dispersion relations (energy vs. momenta and momenta vs. energy) and the corresponding time delay up to the second-order accuracy in the quantum gravity scale (deformation parameter). A general framework describing modified dispersion relations and time delay with respect to different noncommutative kappa-Minkowski spacetime realizations is firstly proposed here and it covers all the cases introduced in the literature. It is shown that some of the realizations provide certain bounds on quadratic corrections, i.e. on quantum gravity scale, but it is not excluded in our framework that the quantum gravity scale is the Planck scale. We also show how the coefficients in the dispersion relations can be obtained through a multiparameter fit of the gamma-ray burst (GRB) data. Copyright (C) EPLA, 2010
引用
收藏
页数:6
相关论文
共 57 条
[21]   κ-deformed spacetime from twist [J].
Bu, Jong-Geon ;
Kim, Hyeong-Chan ;
Lee, Youngone ;
Vac, Chang Hyon ;
Yee, Jae Hyung .
PHYSICS LETTERS B, 2008, 665 (2-3) :95-99
[22]   Differential structure on κ-Minkowski spacetime realized as module of twisted Weyl algebra [J].
Bu, Jong-Geon ;
Kim, Hyeong-Chan ;
Yee, Jae Hyung .
PHYSICS LETTERS B, 2009, 679 (05) :486-490
[23]   Towards quantum noncommutative κ-deformed field theory [J].
Daszkiewicz, Marcin ;
Lukierski, Jerzy ;
Woronowicz, Mariusz .
PHYSICAL REVIEW D, 2008, 77 (10)
[24]   SPACETIME QUANTIZATION INDUCED BY CLASSICAL GRAVITY [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
PHYSICS LETTERS B, 1994, 331 (1-2) :39-44
[25]   THE QUANTUM STRUCTURE OF SPACETIME AT THE PLANCK-SCALE AND QUANTUM-FIELDS [J].
DOPLICHER, S ;
FREDENHAGEN, K ;
ROBERTS, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :187-220
[26]   Derivation of a vacuum refractive index in a stringy space-time foam model [J].
Ellis, John ;
Mavromatos, N. E. ;
Nanopoulos, D. V. .
PHYSICS LETTERS B, 2008, 665 (05) :412-417
[27]   Planck-scale modified dispersion relations and Finsler geometry [J].
Girelli, F. ;
Liberati, S. ;
Sindoni, L. .
PHYSICAL REVIEW D, 2007, 75 (06)
[28]   Deformed oscillator algebras and QFT in κ-Minkowski spacetime [J].
Govindarajan, T. R. ;
Gupta, Kumar S. ;
Harikumar, E. ;
Meljanac, S. ;
Meljanac, D. .
PHYSICAL REVIEW D, 2009, 80 (02)
[29]   Twisted statistics in κ-Minkowski spacetime [J].
Govindarajan, T. R. ;
Gupta, Kumar S. ;
Harikumar, E. ;
Meljanac, S. ;
Meljanac, D. .
PHYSICAL REVIEW D, 2008, 77 (10)
[30]  
HARIKUMAR E, ARXIV09105778