PANACEA cough sound-based diagnosis of COVID-19 for the DiCOVA 2021 Challenge

被引:5
|
作者
Kamble, Madhu R. [1 ]
Gonzalez-Lopez, Jose A. [2 ]
Grau, Teresa [3 ]
Espin, Juan M. [3 ]
Cascioli, Lorenzo [1 ]
Huang, Yiqing [1 ]
Gomez-Alanis, Alejandro [2 ]
Patino, Jose [1 ]
Font, Roberto [3 ]
Peinado, Antonio M. [2 ]
Gomez, Angel M. [2 ]
Evans, Nicholas [1 ]
Zuluaga, Maria A. [1 ]
Todisco, Massimiliano [1 ]
机构
[1] EURECOM, Biot, France
[2] Univ Granada, Granada, Spain
[3] Biometr Vox SL, Murcia, Spain
来源
INTERSPEECH 2021 | 2021年
关键词
COVID-19; respiratory sounds; machine learning; disease diagnosis; healthcare; FEATURES;
D O I
10.21437/Interspeech.2021-1062
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
The COVID-19 pandemic has led to the saturation of public health services worldwide. In this scenario, the early diagnosis of SARS-Cov-2 infections can help to stop or slow the spread of the virus and to manage the demand upon health services. This is especially important when resources are also being stretched by heightened demand linked to other seasonal diseases, such as the flu. In this context, the organisers of the DiCOVA 2021 challenge have collected a database with the aim of diagnosing COVID-19 through the use of coughing audio samples. This work presents the details of the automatic system for COVID-19 detection from cough recordings presented by team PANACEA. This team consists of researchers from two European academic institutions and one company: EURECOM (France), University of Granada (Spain), and Biometric Vox S.L. (Spain). We developed several systems based on established signal processing and machine learning methods. Our best system employs a Teager energy operator cepstral coefficients (TECCs) based frontend and Light gradient boosting machine (LightGBM) backend. The AUC obtained by this system on the test set is 76.31% which corresponds to a 10% improvement over the official baseline.
引用
收藏
页码:906 / 910
页数:5
相关论文
共 50 条
  • [31] Challenges and Opportunities of Deep Learning for Cough-Based COVID-19 Diagnosis: A Scoping Review
    Ghrabli, Syrine
    Elgendi, Mohamed
    Menon, Carlo
    DIAGNOSTICS, 2022, 12 (09)
  • [32] EFFICIENT COVID-19 DISEASE DIAGNOSIS BASED ON COUGH SIGNAL PROCESSING AND SUPERVISED MACHINE LEARNING
    Bensid K.
    Lati A.
    Benlamoudi A.
    Ghouar B.E.
    Senoussi M.L.
    Diagnostyka, 2023, 24 (01):
  • [33] Digital health: A panacea in COVID-19 crisis
    Rani, Ruchika
    Kumar, Rajesh
    Mishra, Rakhi
    Sharma, Suresh K.
    JOURNAL OF FAMILY MEDICINE AND PRIMARY CARE, 2021, 10 (01) : 62 - 65
  • [34] COVID-19 challenge for modern medicine
    Dzieciatkowski, Tomasz
    Szarpak, Lukasz
    Filipiak, Krzysztof J.
    Jaguszewski, Milosz
    Adny, Jerzy R. L.
    Smereka, Jacek
    CARDIOLOGY JOURNAL, 2020, 27 (02) : 175 - 183
  • [35] Cough-based COVID-19 Detection with Contextual Attention Convolutional Neural Networks and Gender Information
    Mallol-Ragolta, Adria
    Cuesta, Helena
    Gomez, Emilia
    Schuller, Bjoern W.
    INTERSPEECH 2021, 2021, : 941 - 945
  • [36] Case based reasoning framework for COVID-19 diagnosis
    Smiti A.
    Nssibi M.
    Ingenierie des Systemes d'Information, 2020, 25 (04): : 469 - 474
  • [37] The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs
    Lakhani, Paras
    Mongan, J.
    Singhal, C.
    Zhou, Q.
    Andriole, K. P.
    Auffermann, W. F.
    Prasanna, P. M.
    Pham, T. X.
    Peterson, Michael
    Bergquist, P. J.
    Cook, T. S.
    Ferraciolli, S. F.
    Corradi, G. C. A.
    Takahashi, M. S.
    Workman, C. S.
    Parekh, M.
    Kamel, S., I
    Galant, J.
    Mas-Sanchez, A.
    Benitez, E. C.
    Sanchez-Valverde, M.
    Jaques, L.
    Panadero, M.
    Vidal, M.
    Culianez-Casas, M.
    Angulo-Gonzalez, D.
    Langer, S. G.
    de la Iglesia-Vaya, Maria
    Shih, G.
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (01) : 365 - 372
  • [38] The 2021 SIIM-FISABIO-RSNA Machine Learning COVID-19 Challenge: Annotation and Standard Exam Classification of COVID-19 Chest Radiographs
    Paras Lakhani
    J. Mongan
    C. Singhal
    Q. Zhou
    K. P. Andriole
    W. F. Auffermann
    P. M. Prasanna
    T. X. Pham
    Michael Peterson
    P. J. Bergquist
    T. S. Cook
    S. F. Ferraciolli
    G. C. A. Corradi
    MS Takahashi
    C. S. Workman
    M. Parekh
    S. I. Kamel
    J. Galant
    A. Mas-Sanchez
    E. C. Benítez
    M. Sánchez-Valverde
    L. Jaques
    M. Panadero
    M. Vidal
    M. Culiañez-Casas
    D. Angulo-Gonzalez
    S. G. Langer
    María de la Iglesia-Vayá
    G. Shih
    Journal of Digital Imaging, 2023, 36 : 365 - 372
  • [39] COVID-19 Detection Model with Acoustic Features from Cough Sound and Its Application
    Kim, Sera
    Baek, Ji-Young
    Lee, Seok-Pil
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [40] Cough Syncope in the Times of COVID-19
    Sheikh, Sadaf
    EURASIAN JOURNAL OF EMERGENCY MEDICINE, 2022, 21 (01) : 76 - 76