Valorisation of macroalgae via the integration of hydrothermal carbonisation and anaerobic digestion

被引:40
作者
Brown, Aaron E. [1 ]
Finnerty, Gillian L. [1 ]
Alonso Camargo-Valero, Miller [2 ,3 ]
Ross, Andrew B. [1 ]
机构
[1] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Civil Engn, BioResource Syst Res Grp, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Nacl Colombia, Dept Ingn Quim, Campus La Nubia, Manizales, Colombia
关键词
Macroalgae; Anaerobic digestion; Hydrothermal carbonisation; Hydrochar; Process waters; COMBUSTION BEHAVIOR; SPENT LIQUOR; BIOMASS; SEAWEED; PRETREATMENT; BIOGAS; FUEL; BIOHYDROGEN; BIOMETHANE; CONVERSION;
D O I
10.1016/j.biortech.2020.123539
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study investigates the integration of hydrothermal carbonisation (HTC) with anaerobic digestion (AD) as a valorisation route for two macroalgae species; S. latissima (SL) and F. serratus (FS). HTC reactions were conducted at temperatures of 150 degrees C, 200 degrees C and 250 degrees C, with resulting hydrochars, process waters and hydrothermal slurries assessed for biomethane potential yields. Un-treated SL generated similar biomethane levels compared to all SL slurries. Whereas all FS slurries improved biomethane yields compared to un-treated FS. Hydrochars represent a greater energy carrier if used as a solid fuel, rather than a feedstock for anaerobic digestion. Integrating HTC and AD, through hydrochar combustion and process water digestion has a greater energetic output than anaerobic digestion of the un-treated macroalgae. Treatment at 150 degrees C, with separate utilisation of products, can improve the energetic output of S. latissima and F. serratus by 47% and 172% respectively, compared to digestion of the un-treated macroalgae.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels
    Adams, J. M. M.
    Toop, T. A.
    Donnison, I. S.
    Gallagher, J. A.
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (21) : 9976 - 9984
  • [2] What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?
    Allen, Eoin
    Wall, David M.
    Herrmann, Christiane
    Xia, Ao
    Murphy, Jerry D.
    [J]. ENERGY, 2015, 81 : 352 - 360
  • [3] Anastasakis K., 2011, THESIS U LEEDS
  • [4] [Anonymous], 2005, Standard methods for the examination of water and waste- water
  • [5] Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment
    Aragon-Briceno, C.
    Ross, A. B.
    Camargo-Valero, M. A.
    [J]. APPLIED ENERGY, 2017, 208 : 1357 - 1369
  • [6] Hydrothermal Carbonization of Biomass: Major Organic Components of the Aqueous Phase
    Becker, Roland
    Dorgerloh, Ute
    Paulke, Ellen
    Mumme, Jan
    Nehls, Irene
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2014, 37 (03) : 511 - 518
  • [7] Biohydrogen and Biogas - An overview on feedstocks and enhancement process
    Bharathiraja, B.
    Sudharsanaa, T.
    Bharghavi, A.
    Jayamuthunagai, J.
    Praveenkumar, R.
    [J]. FUEL, 2016, 185 : 810 - 828
  • [8] Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion
    Bruhn, Annette
    Dahl, Jonas
    Nielsen, Henrik Bangso
    Nikolaisen, Lars
    Rasmussen, Michael Bo
    Markager, Stiig
    Olesen, Birgit
    Arias, Carlos
    Jensen, Peter Daugbjerg
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (03) : 2595 - 2604
  • [9] Effects of spent liquor recirculation in hydrothermal carbonization
    Catalkopru, Arzu Kabadayi
    Kantarli, Ismail Cem
    Yanik, Jale
    [J]. BIORESOURCE TECHNOLOGY, 2017, 226 : 89 - 93
  • [10] Hydrochar production from watermelon peel by hydrothermal carbonization
    Chen, Xuejiao
    Lin, Qimei
    He, Ruidong
    Zhao, Xiaorong
    Li, Guitong
    [J]. BIORESOURCE TECHNOLOGY, 2017, 241 : 236 - 243