Deep learning-based image super-resolution considering quantitative and perceptual quality

被引:11
|
作者
Choi, Jun-Ho [1 ]
Kim, Jun-Hyuk [1 ]
Cheon, Manri [1 ]
Lee, Jong-Seok [1 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, 85 Songdogwahak Ro, Incheon, South Korea
关键词
Perceptual super-resolution; Deep learning; Aesthetics; Image quality;
D O I
10.1016/j.neucom.2019.06.103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, it has been shown that in super-resolution, there exists a tradeoff relationship between the quantitative and perceptual quality of super-resolved images, which correspond to the similarity to the ground-truth images and the naturalness, respectively. In this paper, we propose a novel super-resolution method that can improve the perceptual quality of the upscaled images while preserving the conventional quantitative performance. The proposed method employs a deep network for multi-pass upscaling in company with a discriminator network and two qualitative score predictor networks. Experimental results demonstrate that the proposed method achieves a good balance of the quantitative and perceptual quality, showing more satisfactory results than existing methods. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:347 / 359
页数:13
相关论文
共 50 条
  • [41] Deep Learning Based Approach Implemented to Image Super-Resolution
    Thuong Le-Tien
    Tuan Nguyen-Thanh
    Hanh-Phan Xuan
    Giang Nguyen-Truong
    Vinh Ta-Quoc
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (04) : 209 - 216
  • [42] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [43] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [44] A brief survey on deep learning based image super-resolution
    Zhu X.
    Li S.
    Wang L.
    High Technology Letters, 2021, 27 (03) : 294 - 302
  • [45] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 (04) : 413 - 426
  • [46] Chip Image Super-Resolution Reconstruction Based on Deep Learning
    Fan M.
    Chi Y.
    Zhang M.
    Li Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 353 - 360
  • [47] DEEP LEARNING BASED IMAGE SUPER-RESOLUTION WITH COUPLED BACKPROPAGATION
    Guo, Tiantong
    Mousavi, Hojjai S.
    Monga, Vishal
    2016 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2016, : 237 - 241
  • [48] Image super-resolution algorithm based on deep learning network
    Chen, Jian
    Wang, Xiang
    Li, Qinrui
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2021, 128 : 180 - 181
  • [49] A Review of Hyperspectral Image Super-Resolution Based on Deep Learning
    Chen, Chi
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    REMOTE SENSING, 2023, 15 (11)
  • [50] A Review of Single Image Super-resolution Based on Deep Learning
    Zhang N.
    Wang Y.-C.
    Zhang X.
    Xu D.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2479 - 2499