Deep learning-based image super-resolution considering quantitative and perceptual quality

被引:11
|
作者
Choi, Jun-Ho [1 ]
Kim, Jun-Hyuk [1 ]
Cheon, Manri [1 ]
Lee, Jong-Seok [1 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, 85 Songdogwahak Ro, Incheon, South Korea
关键词
Perceptual super-resolution; Deep learning; Aesthetics; Image quality;
D O I
10.1016/j.neucom.2019.06.103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, it has been shown that in super-resolution, there exists a tradeoff relationship between the quantitative and perceptual quality of super-resolved images, which correspond to the similarity to the ground-truth images and the naturalness, respectively. In this paper, we propose a novel super-resolution method that can improve the perceptual quality of the upscaled images while preserving the conventional quantitative performance. The proposed method employs a deep network for multi-pass upscaling in company with a discriminator network and two qualitative score predictor networks. Experimental results demonstrate that the proposed method achieves a good balance of the quantitative and perceptual quality, showing more satisfactory results than existing methods. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:347 / 359
页数:13
相关论文
共 50 条
  • [31] Dictionary learning-based image super-resolution for multimedia devices
    Rutul Patel
    Vishvjit Thakar
    Rutvij Joshi
    Multimedia Tools and Applications, 2023, 82 : 17243 - 17262
  • [32] Deep Learning based Frameworks for Image Super-Resolution and Noise-Resilient Super-Resolution
    Sharma, Manoj
    Chaudhury, Santanu
    Lall, Brejesh
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 744 - 751
  • [33] ROBUST LEARNING-BASED SUPER-RESOLUTION
    Kim, Changhyun
    Choi, Kyuha
    Lee, Ho-young
    Hwang, Kyuyoung
    Ra, Jong Beom
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2017 - 2020
  • [34] Limitations of Learning-Based Super-Resolution
    Shoji, Hiroki
    Gohshi, Seiichi
    2015 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2015, : 646 - 651
  • [35] Learning-based and quality preserving super-resolution of noisy images
    Cammarasana S.
    Patanè G.
    Multimedia Tools and Applications, 2025, 84 (9) : 6007 - 6023
  • [36] Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning
    Hu Fen
    Lin Yang
    Hou Mengdi
    Hu Haofeng
    Pan Leiting
    Liu Tiegen
    Xu Jingjun
    ACTA OPTICA SINICA, 2020, 40 (24)
  • [37] A brief survey on deep learning based image super-resolution
    祝晓斌
    Li Shanshan
    Wang Lei
    HighTechnologyLetters, 2021, 27 (03) : 294 - 302
  • [38] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [39] Research on Image Super-Resolution Reconstruction Based on Deep Learning
    An, Lingran
    Dai, Fengzhi
    Yuan, Yasheng
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 640 - 643
  • [40] Image super-resolution reconstruction based on deep dictionary learning and A
    Huang, Yi
    Bian, Weixin
    Jie, Biao
    Zhu, Zhiqiang
    Li, Wenhu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2629 - 2641