Deep learning-based image super-resolution considering quantitative and perceptual quality

被引:11
作者
Choi, Jun-Ho [1 ]
Kim, Jun-Hyuk [1 ]
Cheon, Manri [1 ]
Lee, Jong-Seok [1 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, 85 Songdogwahak Ro, Incheon, South Korea
关键词
Perceptual super-resolution; Deep learning; Aesthetics; Image quality;
D O I
10.1016/j.neucom.2019.06.103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, it has been shown that in super-resolution, there exists a tradeoff relationship between the quantitative and perceptual quality of super-resolved images, which correspond to the similarity to the ground-truth images and the naturalness, respectively. In this paper, we propose a novel super-resolution method that can improve the perceptual quality of the upscaled images while preserving the conventional quantitative performance. The proposed method employs a deep network for multi-pass upscaling in company with a discriminator network and two qualitative score predictor networks. Experimental results demonstrate that the proposed method achieves a good balance of the quantitative and perceptual quality, showing more satisfactory results than existing methods. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:347 / 359
页数:13
相关论文
共 50 条
  • [21] A Review of Hyperspectral Image Super-Resolution Based on Deep Learning
    Chen, Chi
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    REMOTE SENSING, 2023, 15 (11)
  • [22] A Review of Single Image Super-resolution Based on Deep Learning
    Zhang N.
    Wang Y.-C.
    Zhang X.
    Xu D.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2479 - 2499
  • [23] Research on Image Super-Resolution Reconstruction Based on Deep Learning
    An, Lingran
    Dai, Fengzhi
    Yuan, Yasheng
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 640 - 643
  • [24] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [25] Deep Learning Based Single Image Super-resolution:A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 (04) : 413 - 426
  • [26] Deep Learning for Image Super-Resolution: A Survey
    Wang, Zhihao
    Chen, Jian
    Hoi, Steven C. H.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3365 - 3387
  • [27] Deep learning-based super-resolution gradient echo imaging of the pancreas: Improvement of image quality and reduction of acquisition time
    Chaika, Maryanna
    Afat, Saif
    Wessling, Daniel
    Afat, Carmen
    Nickel, Dominik
    Kannengiesser, Stephan
    Herrmann, Judith
    Almansour, Haidara
    Maennlin, Simon
    Othman, Ahmed E.
    Gassenmaier, Sebastian
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (02) : 53 - 59
  • [28] Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning
    Hu Fen
    Lin Yang
    Hou Mengdi
    Hu Haofeng
    Pan Leiting
    Liu Tiegen
    Xu Jingjun
    ACTA OPTICA SINICA, 2020, 40 (24)
  • [29] Deep Learning-Based Super-Resolution Reconstruction and Segmentation of Photoacoustic Images
    Jiang, Yufei
    He, Ruonan
    Chen, Yi
    Zhang, Jing
    Lei, Yuyang
    Yan, Shengxian
    Cao, Hui
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [30] Influence of deep learning-based super-resolution reconstruction on Agatston score
    Morikawa, Tomoro
    Tanabe, Yuki
    Suekuni, Hiroshi
    Fukuyama, Naoki
    Toshimori, Wataru
    Toritani, Hidetaka
    Sawada, Shun
    Matsuda, Takuya
    Nakano, Shota
    Kido, Teruhito
    EUROPEAN RADIOLOGY, 2025,