Lq regularisation-based synthetic aperture radar image feature enhancement via iterative thresholding algorithm

被引:14
作者
Bi, Hui [1 ,2 ]
Zhang, Bingchen [1 ]
Wang, Zhengdao [3 ]
Hong, Wen [1 ]
机构
[1] Chinese Acad Sci, Inst Elect, Sci & Technol Microwave Imaging Lab, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA USA
基金
中国国家自然科学基金;
关键词
Image enhancement - Radar imaging - Iterative methods - Echo suppression;
D O I
10.1049/el.2016.1168
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel L-q(0 < q <= 1) regularisation-based synthetic aperture radar (SAR) image feature enhancement method via SAR complex image data is presented. Compared with conventional L-q regularisation-based compressive sensing imaging technique with full-sampling raw data, the proposed method can achieve the same effect of image feature enhancement while enjoying much less computational cost. Through simulations and experiments, the superiority of the proposed method is demonstrated in terms of sidelobe, azimuth ambiguity, clutter suppression and super-resolution.
引用
收藏
页码:1336 / 1337
页数:2
相关论文
共 8 条
[1]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[2]  
Çetin M, 2003, IEEE T AERO ELEC SYS, V39, P1375, DOI 10.1109/TAES.2003.1261134
[3]   Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J].
Çetin, M ;
Karl, WC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (04) :623-631
[4]  
Cumming I.G., 2004, DIGITAL PROCESSING S
[5]  
Curlander J. C., 1991, Synthetic Aperture Radar
[6]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]   Sparse microwave imaging: Principles and applications [J].
Zhang BingChen ;
Hong Wen ;
Wu YiRong .
SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (08) :1722-1754