Electrostatics in fractal geometry: Fractional calculus approach

被引:21
作者
Baskin, Emmanuel [1 ,2 ,3 ]
Iomin, Alexander [1 ,2 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Inst Solid State, IL-32000 Haifa, Israel
[3] H4 Energy Solut Ltd, IL-76702 Rehovot, Israel
基金
以色列科学基金会;
关键词
RANDOM-WALK; DYNAMICS;
D O I
10.1016/j.chaos.2011.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An electric field in a composite dielectric with a fractal charge distribution is obtained in the spherical symmetry case. The method is based on the splitting of a composite volume into a fractal volume V(d) similar to r(d) with the fractal dimension d and a complementary host volume V(h) = V(3) - V(d). Integrations over these fractal volumes correspond to the convolution integrals that eventually lead to the employment of the fractional integro-differentiation. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:335 / 341
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Superdiffusion on a comb structure [J].
Baskin, E ;
Iomin, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (12) :120603-1
[3]  
Bateman H., 1955, Higher transcendental functions, California Institute of technology. Bateman Manuscript project
[4]  
Ben-Avraham D., 2000, Diffusion and reactions in fractals and disordered systems
[5]  
De Gennes P.-G, 1979, Scaling concepts in polymer physics
[6]  
Falconer K., 1990, FRACTAL GEOMETRY
[7]  
Gouyet J.F., 1996, Physics and Fractal Structures
[8]   Negative superdiffusion due to inhomogeneous convection [J].
Iomin, A ;
Baskin, E .
PHYSICAL REVIEW E, 2005, 71 (06)
[9]  
Kolmogoroff AN, 1940, CR ACAD SCI URSS, V26, P115
[10]  
Landau LD, 1995, ELECTRODYNAMICS CONT