On the scaling of probability density functions with apparent power-law exponents less than unity

被引:18
作者
Christensen, K. [1 ,2 ]
Farid, N. [2 ]
Pruessner, G. [2 ,3 ]
Stapleton, M. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
[3] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
Probability;
D O I
10.1140/epjb/e2008-00173-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We derive general properties of the finite-size scaling of probability density functions and show that when the apparent exponent ($) over tilde of a probability density is less than 1, the associated finite-size scaling ansatz has a scaling exponent center dot equal to 1, provided that the fraction of events in the universal scaling part of the probability density function is non-vanishing in the thermodynamic limit. We find the general result that center dot >= 1 and center dot >= (center dot) over tilde. Moreover, we show that if the scaling function G(center dot) approaches a non-zero constant for small arguments, lim(x -> 0) G(center dot) center dot 0, then center dot = (center dot) over tilde. However, if the scaling function vanishes for small arguments, lim(x -> 0) G(center dot) = 0, then center dot = 1, again assuming a non-vanishing fraction of universal events. Finally, we apply the formalism developed to examples from the literature, including some where misunderstandings of the theory of scaling have led to erroneous conclusions.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 14 条
[1]   Unified scaling law for earthquakes [J].
Bak, P ;
Christensen, K ;
Danon, L ;
Scanlon, T .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4-178501
[2]   Analysis of the spatial distribution between successive earthquakes [J].
Davidsen, J ;
Paczuski, M .
PHYSICAL REVIEW LETTERS, 2005, 94 (04)
[3]   Evolving networks through deletion and duplication [J].
Farid, Nadia ;
Christensen, Kim .
NEW JOURNAL OF PHYSICS, 2006, 8
[4]   Avalanche dynamics in a pile of rice [J].
Frette, V ;
Christensen, K ;
MaltheSorenssen, A ;
Feder, J ;
Jossang, T ;
Meakin, P .
NATURE, 1996, 379 (6560) :49-52
[5]  
JENSEN HJ, 1998, SELF ORG CRITICALITY
[6]   Scaling behavior of the directed percolation universality class [J].
Lübeck, S ;
Willmann, RD .
NUCLEAR PHYSICS B, 2005, 718 (03) :341-361
[7]  
Marro J., 1999, Nonequilibrium Phase Transitions in Lattice Models
[8]  
Pfeuty P, 1977, INTRO RENORMALIZATIO
[9]  
PRIVMAN V, 1991, PHASE TRANSITIONS CR, V14, P1
[10]   Cluster evolution in steady-state two-phase flow in porous media [J].
Ramstad, T ;
Hansen, A .
PHYSICAL REVIEW E, 2006, 73 (02)