Tunneling quantum dot sensors for multi-band infrared and terahertz radiation detection

被引:7
作者
Ariyawansa, G. [1 ]
Matsik, S. G. [1 ]
Perera, A. G. U. [1 ]
Su, X. H. [2 ]
Bhattacharya, P. [2 ]
机构
[1] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI USA
来源
2007 IEEE SENSORS, VOLS 1-3 | 2007年
基金
美国国家科学基金会;
关键词
D O I
10.1109/ICSENS.2007.4388446
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tunneling quantum dot infrared photodetector (T-QDIP) structures designed for multi-band infrared and terahertz radiation detection are demonstrated. In T-QDIP structures, photoabsorption takes place in InGaAs QDs (due to transition of carriers from the QD ground-state to a QD excited-state) and photoexcited carriers are selectively collected by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers. This approach was effectively used to develop terahertz sensors. Characteristics of a room temperature T-QDIP showing two color responses at wavelengths of 6 and 17 pm and a terahertz T-QDIP responding at 6 THz are presented.
引用
收藏
页码:503 / 506
页数:4
相关论文
共 20 条
[1]   Theoretical modeling and experimental characterization of InAs/InGaAs quantum dots in a well detector [J].
Amtout, A ;
Raghavan, S ;
Rotella, P ;
von Winckel, G ;
Stintz, A ;
Krishna, S .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (07) :3782-3786
[2]   Quasi-bound states determination using a perturbed wavenumbers method in a large quantum box [J].
Anemogiannis, E ;
Glytsis, EN ;
Gaylord, TK .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (05) :742-752
[3]   Effect of well width on three-color quantum dots-in-a-well infrared detectors [J].
Ariyawansa, G ;
Perera, AGU ;
Raghavan, GS ;
von Winckel, G ;
Stintz, A ;
Krishna, S .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (05) :1064-1066
[4]   Observation of resonant tunneling through a self-assembled InAs quantum dot layer [J].
Aslan, B ;
Liu, HC ;
Gupta, JA ;
Wasilewski, ZR ;
Aers, GC ;
Raymond, S ;
Buchanan, M .
APPLIED PHYSICS LETTERS, 2006, 88 (04) :1-3
[5]   Response spectra from mid- to far-infrared, polarization behaviors, and effects of electron numbers in quantum-dot photodetectors [J].
Aslan, B ;
Liu, HC ;
Korkusinski, M ;
Cheng, SJ ;
Hawrylak, P .
APPLIED PHYSICS LETTERS, 2003, 82 (04) :630-632
[6]   GE-GA PHOTOCONDUCTOR ARRAYS - DESIGN CONSIDERATIONS AND QUANTITATIVE-ANALYSIS OF PROTOTYPE SINGLE PIXELS [J].
BEEMAN, JW ;
HALLER, EE .
INFRARED PHYSICS & TECHNOLOGY, 1994, 35 (07) :827-836
[7]   PHOTOEXCITED COHERENT TUNNELING IN A DOUBLE-BARRIER SUPERLATTICE [J].
CHOI, KK ;
LEVINE, BF ;
BETHEA, CG ;
WALKER, J ;
MALIK, RJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (21) :2459-2462
[8]   PERIODIC NEGATIVE CONDUCTANCE BY SEQUENTIAL RESONANT TUNNELING THROUGH AN EXPANDING HIGH-FIELD SUPERLATTICE DOMAIN [J].
CHOI, KK ;
LEVINE, BF ;
MALIK, RJ ;
WALKER, J ;
BETHEA, CG .
PHYSICAL REVIEW B, 1987, 35 (08) :4172-4175
[9]   High performance single emitter homojunction interfacial work function far infrared detectors [J].
Esaev, DG ;
Rinzan, MBM ;
Matsik, SG ;
Perera, AGU ;
Liu, HC ;
Zvonkov, BN ;
Gavrilenko, VI ;
Belyanin, AA .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (02) :512-519
[10]   Demonstration of 640x512 pixels long-wavelength infrared (LWIR) quantum dot infrared photodetector (QDIP) imaging focal plane array [J].
Gunapala, S. D. ;
Bandara, S. V. ;
Hill, C. J. ;
Ting, D. Z. ;
Liu, J. K. ;
Rafol, S. B. ;
Blazejewski, E. R. ;
Mumolo, J. M. ;
Keo, S. A. ;
Krishna, S. ;
Chang, Y.-C. ;
Shott, C. A. .
INFRARED PHYSICS & TECHNOLOGY, 2007, 50 (2-3) :149-155