REDUCED BASIS MULTISCALE FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS

被引:12
|
作者
Hesthaven, Jan S. [1 ,2 ]
Zhang, Shun [3 ]
Zhu, Xueyu [4 ]
机构
[1] Ecole Polytech Fed Lausanne, Math Inst Computat Sci & Engn MATHICSE, Chair Computat Math & Simulat Sci MCSS, CH-1015 Lausanne, Switzerland
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[4] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
来源
MULTISCALE MODELING & SIMULATION | 2015年 / 13卷 / 01期
关键词
multiscale finite element methods; reduced basis methods; EMPIRICAL INTERPOLATION; HOMOGENIZATION; CONVERGENCE;
D O I
10.1137/140955070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose reduced basis multiscale finite element methods (RB-MsFEMs) for elliptic problems with highly oscillating coefficients. The method is based on MsFEMs with local test functions that encode the oscillatory behavior (see [G. Allaire and R. Brizzi, Multiscale Model. Simul., 4 (2005), pp. 790-812, J. S. Hesthaven, S. Zhang, and X. Zhu, Multiscale Model. Simul., 12 (2014), pp. 650-666]). For uniform rectangular meshes, the local oscillating test functions are represented by a reduced basis method (RBM), parameterizing the center of the elements. For triangular elements, we introduce a slightly different approach. By exploring oversampling of the oscillating test functions, initially introduced to recover a better approximation of the global harmonic coordinate map, we first build the reduced basis on uniform rectangular elements containing the original triangular elements and then restrict the oscillating test function to the triangular elements. These techniques are also generalized to the case where the coefficients dependent on additional independent parameters. The analysis of the proposed methods is supported by various numerical results, obtained on regular and unstructured grids.
引用
收藏
页码:316 / 337
页数:22
相关论文
共 50 条
  • [1] Reduced multiscale finite element basis methods for elliptic PDEs with parameterized inputs
    Jiang, Lijian
    Li, Qiuqi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 101 - 120
  • [2] REDUCED BASIS FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR QU ASILINEAR ELLIPTIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Bai, Yun
    Vilmart, Gilles
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (01): : 91 - 118
  • [3] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457
  • [4] Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems
    Abdulle, Assyr
    Bai, Yun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (21) : 7014 - 7036
  • [5] On finite element methods for heterogeneous elliptic problems
    LNCC - Laboratório Nacional de Computação Científica, Av. Getúlio Vargas 333, Petrópolis, CEP 25651-075 RJ, Brazil
    Int. J. Solids Struct., 25-26 (6436-6450):
  • [6] On finite element methods for heterogeneous elliptic problems
    Loula, A. F. D.
    Correa, M. R.
    Guerreiro, J. N. C.
    Toledo, E. M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (25-26) : 6436 - 6450
  • [7] Adaptive generalized multiscale finite element methods for H(curl)-elliptic problems with heterogeneous coefficients
    Chung, Eric T.
    Li, Yanbo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 357 - 373
  • [8] Adaptive reduced basis finite element heterogeneous multiscale method
    Abdulle, Assyr
    Bai, Yun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 257 : 203 - 220
  • [9] Third order nodal finite element methods with transverse and reduced integration for elliptic problems
    Hennart, JP
    Mund, EH
    del Valle, E
    APPLIED NUMERICAL MATHEMATICS, 2003, 46 (02) : 209 - 230
  • [10] A DISCONTINUOUS GALERKIN REDUCED BASIS ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    Antonietti, Paola F.
    Pacciarini, Paolo
    Quarteroni, Alfio
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (02): : 337 - 360