Diffusion model of the impact of helium and argon impurities on deuterium retention in tungsten

被引:12
作者
Reinhart, M. [1 ]
Kreter, A. [1 ]
Unterberg, B. [1 ]
Rasinski, M. [1 ]
Linsmeier, Ch [1 ]
机构
[1] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Partner Trilateral Euregio Cluster TEC, D-52425 Julich, Germany
基金
欧盟地平线“2020”;
关键词
deuterium retention; helium nanobubbles; tungsten; Plasma-wall-interaction; PLASMA; SURFACE;
D O I
10.1088/1741-4326/aafe8d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The influence of helium and argon impurities on the deuterium retention in tungsten is investigated by a numerical diffusion model, which treats diffusing depth profiles for deuterium and helium or argon in tungsten, taking into account the suggested effects of helium or argon. With helium, a helium nanobubble layer builds up at the surface of the sample, with depths higher than the penetration depth of the incident helium and deuterium ions. The nanobubbles form a porous network, which allows the release of trapped deuterium by surface recombination and diffusion through the pores to the surface. For argon, only a shallow layer of argon-induced defects exists, which also act as trapping sites for deuterium. A number of experiments with tungsten samples were conducted at the linear plasma device PSI-2 in support of the model. Helium and argon were admixed to deuterium plasma in ratios of up to 8% for otherwise similar exposure conditions. In addition, a variation of ion fluences was performed for investigation of the onset and evolution of the effects of impurities. The model shows that the influence on the deuterium retention both for helium nanobubbles as well as for argon-induced defects depends strongly on the ratio between the thickness of the helium- or argon-affected layer and the penetration depth of deuterium ions.
引用
收藏
页数:10
相关论文
共 36 条
[1]   HYDROGEN TRAPPING IN HELIUM DAMAGED METALS - A THEORETICAL APPROACH [J].
ABRAMOV, E ;
ELIEZER, D .
JOURNAL OF MATERIALS SCIENCE, 1992, 27 (10) :2595-2598
[2]   Surface morphology and deuterium retention in tungsten exposed to low-energy, high flux pure and helium-seeded deuterium plasmas [J].
Alimov, V. Kh ;
Shu, W. M. ;
Roth, J. ;
Sugiyama, K. ;
Lindig, S. ;
Balden, M. ;
Isobe, K. ;
Yamanishi, T. .
PHYSICA SCRIPTA, 2009, T138
[3]   Atomistic simulations of tungsten surface evolution under low-energy neon implantation [J].
Backman, Marie ;
Hammond, Karl D. ;
Sefta, Faiza ;
Wirth, Brian D. .
NUCLEAR FUSION, 2016, 56 (04)
[4]   Hydrogen isotope transport across tungsten surfaces exposed to a fusion relevant He ion fluence [J].
Baldwin, M. J. ;
Doerner, R. P. .
NUCLEAR FUSION, 2017, 57 (07)
[5]   Effect of He on D retention in W exposed to low-energy, high-fluence (D, He, Ar) mixture plasmas [J].
Baldwin, M. J. ;
Doerner, R. P. ;
Wampler, W. R. ;
Nishijima, D. ;
Lynch, T. ;
Miyamoto, M. .
NUCLEAR FUSION, 2011, 51 (10)
[6]   Hydrogen isotope retention and recycling in fusion reactor plasma-facing components [J].
Causey, RA .
JOURNAL OF NUCLEAR MATERIALS, 2002, 300 (2-3) :91-117
[7]   Quantitatively measuring the influence of helium in plasma-exposed tungsten [J].
Doerner, R. P. ;
Baldwin, M. J. ;
Simmonds, M. ;
Yu, J. H. ;
Buzi, L. ;
Schwarz-Selinger, T. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :372-378
[8]  
Eckstein W., 2002, CALCULATED SPUTTERIN, V9
[9]   TEM observation of the growth process of helium nanobubbles on tungsten: Nanostructure formation mechanism [J].
Kajita, Shin ;
Yoshida, Naoaki ;
Yoshihara, Reiko ;
Ohno, Noriyasu ;
Yamagiwa, Masato .
JOURNAL OF NUCLEAR MATERIALS, 2011, 418 (1-3) :152-158
[10]   Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO [J].
Kallenbach, A. ;
Bernert, M. ;
Dux, R. ;
Casali, L. ;
Eich, T. ;
Giannone, L. ;
Herrmann, A. ;
McDermott, R. ;
Mlynek, A. ;
Mueller, H. W. ;
Reimold, F. ;
Schweinzer, J. ;
Sertoli, M. ;
Tardini, G. ;
Treutterer, W. ;
Viezzer, E. ;
Wenninger, R. ;
Wischmeier, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)