De Novo Assembly of the Donkey White Blood Cell Transcriptome and a Comparative Analysis of Phenotype-Associated Genes between Donkeys and Horses

被引:1
作者
Xie, Feng-Yun [1 ,2 ,3 ]
Feng, Yu-Long [3 ,4 ]
Wang, Hong-Hui [1 ,2 ,3 ]
Ma, Yun-Feng [3 ,4 ]
Yang, Yang [3 ]
Wang, Yin-Chao [4 ]
Shen, Wei [1 ,2 ,3 ]
Pan, Qing-Jie [2 ,3 ]
Yin, Shen [1 ,2 ,3 ]
Sun, Yu-Jiang [3 ]
Ma, Jun-Yu [1 ,2 ,3 ]
机构
[1] Qingdao Agr Univ, Inst Reprod Sci, Qingdao 266109, Shandong, Peoples R China
[2] Qingdao Agr Univ, Key Lab Anim Reprod & Germplasm Enhancement Univ, Qingdao 266109, Shandong, Peoples R China
[3] Qingdao Agr Univ, Coll Anim Sci & Technol, Qingdao 266109, Shandong, Peoples R China
[4] Shandong Dongeejiao Co Ltd, Black Donkey Res Inst, Liaocheng 252000, Shandong, Peoples R China
关键词
PACT; INTEGRATION;
D O I
10.1371/journal.pone.0133258
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.
引用
收藏
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 2011, RESOURCES CNCOAG ANI
[2]   Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome [J].
Brooks, Samantha A. ;
Gabreski, Nicole ;
Miller, Donald ;
Brisbin, Abra ;
Brown, Helen E. ;
Streeter, Cassandra ;
Mezey, Jason ;
Cook, Deborah ;
Antczak, Douglas F. .
PLOS GENETICS, 2010, 6 (04)
[3]   Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome [J].
Carter, MG ;
Johns, MA ;
Zeng, XB ;
Zhou, L ;
Zink, MC ;
Mankowski, JL ;
Donovan, DM ;
Baylin, SB .
HUMAN MOLECULAR GENETICS, 2000, 9 (03) :413-419
[4]   A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy [J].
Chen, Weili ;
Li, Quanzhi ;
Hudson, Wendy A. ;
Kumar, Ashish ;
Kirchhof, Nicole ;
Kersey, John H. .
BLOOD, 2006, 108 (02) :669-677
[5]   Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses [J].
Chen, WY ;
Wang, DH ;
Yen, RWC ;
Luo, JY ;
Gu, W ;
Baylin, SB .
CELL, 2005, 123 (03) :437-448
[6]  
Dekkers J C M, 2004, J Anim Sci, V82 E-Suppl, pE313
[7]   The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif [J].
Deltour, S ;
Pinte, S ;
Guerardel, C ;
Wasylyk, B ;
Leprince, D .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (13) :4890-4901
[8]  
Denis Fielding PS, 1997, PEOPLE AND DEVELOPME
[9]   Full-length transcriptome assembly from RNA-Seq data without a reference genome [J].
Grabherr, Manfred G. ;
Haas, Brian J. ;
Yassour, Moran ;
Levin, Joshua Z. ;
Thompson, Dawn A. ;
Amit, Ido ;
Adiconis, Xian ;
Fan, Lin ;
Raychowdhury, Raktima ;
Zeng, Qiandong ;
Chen, Zehua ;
Mauceli, Evan ;
Hacohen, Nir ;
Gnirke, Andreas ;
Rhind, Nicholas ;
di Palma, Federica ;
Birren, Bruce W. ;
Nusbaum, Chad ;
Lindblad-Toh, Kerstin ;
Friedman, Nir ;
Regev, Aviv .
NATURE BIOTECHNOLOGY, 2011, 29 (07) :644-U130
[10]   Integration of mouse phenome data resources [J].
Hancock, John M. ;
Adams, Niels C. ;
Aidinis, Vassilis ;
Blake, Andrew ;
Blake, Judith A. ;
Bogue, Molly ;
Brown, Steve D. M. ;
Chesler, Elissa ;
Davidson, Duncan ;
Duran, Christopher ;
Eppig, Janan T. ;
Gailus-Durner, Valerie ;
Gates, Hilary ;
Gkoutos, Georgios V. ;
Greenaway, Simon ;
De Angelis, Martin Hrabe ;
Kollias, George ;
Leblanc, Sophie ;
Lee, Kirsty ;
Lengger, Christoph ;
Maier, Holger ;
Mallon, Ann-Marie ;
Masuya, Hiroshi ;
Melvin, David G. ;
Mueller, Werner ;
Parkinson, Helen ;
Proctor, Glenn ;
Reuveni, Eli ;
Schofield, Paul ;
Shukla, Aadya ;
Smith, Cynthia ;
Toyoda, Tetsuro ;
Vasseur, Laurent ;
Wakana, Shigeharu ;
Walling, Alison ;
White, Jacqui ;
Wood, Joe ;
Zouberakis, Michalis .
MAMMALIAN GENOME, 2007, 18 (03) :157-163