MoO2 Sacrificial Layer for Optimizing Back Contact Interface of Cu2ZnSn(S,Se)4 Solar Cells

被引:23
作者
Xu, Bin [1 ]
Lu, Xiaoshuang [1 ]
Ma, Chuanhe [1 ]
Liu, Yulin [1 ]
Qi, Ruijuan [1 ]
Huang, Rong [1 ]
Chen, Ye [1 ]
Yang, Pingxiong [1 ]
Chu, Junhao [1 ,2 ]
Sun, Lin [1 ]
机构
[1] East China Normal Univ, Dept Elect, Minist Educ, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[2] Chinese Acad Sci, Natl Lab Infrared Phys, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2020年 / 10卷 / 04期
基金
中国国家自然科学基金;
关键词
Back contact interface; Cu2ZnSn(S; Se)(4) solar cells; MoO2 thin film; preannealing; sacrificial layer; ELECTRONIC-STRUCTURE; EFFICIENCIES; ABSORBER; IMPACT; OXIDE;
D O I
10.1109/JPHOTOV.2020.2987165
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The conversion efficiency of Cu2ZnSn(S,Se)(4) (CZTSSe) solar cells is relatively low, due to the complicated intrinsic defects and the unsuitable contact interfaces. In this work, MoO2 thin films prepared by a simple preannealing method are introduced to Mo/CZTSSe back contact interface. For the first time, it is found that MoO2 acts as a sacrificial layer rather than the traditional intermediate layer. Specifically, the MoO2 sacrificial layer will disappear and become a thin MoSe2 layer after it blocks the over-selenization of Mo electrode. In addition, it has a positive effect on the preferred orientation of MoSe2 and the crystallization of CZTSSe layer. Furthermore, the chemical mechanism on MoO2 as sacrificial layer is first investigated, and it can be well described by Van 't Hoff equation. With the aid of MoO2 sacrificial layer, the performance of CZTSSe device increases from 5.67% to 8.29% (active area efficiency is 9.08%) without the MgF2 antireflection layer.
引用
收藏
页码:1191 / 1200
页数:10
相关论文
共 44 条
[1]   Impact of Minor Phases on the Performances of CZTSSe Thin-Film Solar Cells [J].
Altamura, Giovanni ;
Vidal, Julien .
CHEMISTRY OF MATERIALS, 2016, 28 (11) :3540-3563
[2]  
[Anonymous], 2017, The European economic and social committee and the committee of the regions on the 2017 list of critical raw materials for the EU
[3]  
[Anonymous], 2019, Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 23.35%
[4]   Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell [J].
Barkhouse, D. Aaron R. ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Todorov, Teodor K. ;
Mitzi, David B. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :6-11
[5]   Enhanced light trapping in solar cells using snow globe coating [J].
Basch, Angelika ;
Beck, Fiona ;
Soederstroem, Thomas ;
Varlamov, Sergey ;
Catchpole, Kylie R. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (07) :837-842
[6]   Layered vanadium and molybdenum oxides: batteries and electrochromics [J].
Chernova, Natasha A. ;
Roppolo, Megan ;
Dillon, Anne C. ;
Whittingham, M. Stanley .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (17) :2526-2552
[7]   Raman spectroscopy of molybdenum oxides -: Part II.: Resonance Raman spectroscopic characterization of the molybdenum oxides Mo4O11 and MoO2 [J].
Dieterle, M ;
Mestl, G .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (05) :822-826
[8]   Optimization of MoSe2 formation for Cu(In,Ga)Se2-based solar cells by using thin superficial molybdenum oxide barrier layers [J].
Duchatelet, A. ;
Savidand, G. ;
Vannier, R. N. ;
Lincot, D. .
THIN SOLID FILMS, 2013, 545 :94-99
[9]   Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces [J].
Greiner, Mark T. ;
Lu, Zheng-Hong .
NPG ASIA MATERIALS, 2013, 5 :e55-e55
[10]   Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells [J].
Gunawan, Oki ;
Todorov, Teodor K. ;
Mitzi, David B. .
APPLIED PHYSICS LETTERS, 2010, 97 (23)