Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen

被引:337
作者
Lazouski, Nikifar [1 ]
Chung, Minju [1 ]
Williams, Kindle [1 ]
Gala, Michal L. [1 ]
Manthiram, Karthish [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL SYNTHESIS; REDUCTION; PRESSURE; ELECTROSYNTHESIS; ELECTRIFICATION;
D O I
10.1038/s41929-020-0455-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical transformations in non-aqueous solvents are important for synthetic and energy storage applications. Use of non-polar gaseous reactants such as nitrogen and hydrogen in non-aqueous solvents is limited by their low solubility and slow transport. Conventional gas diffusion electrodes improve the transport of gaseous species in aqueous electrolytes by facilitating efficient gas-liquid contacting in the vicinity of the electrode. Their use with non-aqueous solvents is hampered by the absence of hydrophobic repulsion between the liquid phase and carbon fibre support. Herein we report a method to overcome transport limitations in tetrahydrofuran using a stainless steel cloth-based support for ammonia synthesis paired with hydrogen oxidation. An ammonia partial current density of 8.8 +/- 1.4 mA cm(-2) and a Faradaic efficiency of 35 +/- 6% are obtained using a lithium-mediated approach. Hydrogen oxidation current densities of up to 25 mA cm(-2) are obtained in two non-aqueous solvents with near-unity Faradaic efficiency. The approach is then applied to produce ammonia from nitrogen and water-splitting-derived hydrogen.
引用
收藏
页码:463 / +
页数:9
相关论文
共 43 条
[31]   Liquid-Water Interactions with Gas-Diffusion-Layer Surfaces [J].
Santamaria, Anthony D. ;
Das, Prodip K. ;
MacDonald, James C. ;
Weber, Adam Z. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (12) :F1184-F1193
[32]   Electrification and Decarbonization of the Chemical Industry [J].
Schiffer, Zachary J. ;
Manthiram, Karthish .
JOULE, 2017, 1 (01) :10-14
[33]   A Combined Theory-Experiment Analysis of the Surface Species in Lithium-Mediated NH3 Electrosynthesis [J].
Schwalbe, Jay A. ;
Statt, Michael J. ;
Chosy, Cullen ;
Singh, Aayush R. ;
Rohr, Brian A. ;
Nielander, Adam C. ;
Andersen, Suzanne Z. ;
McEnaney, Joshua M. ;
Baker, Jon G. ;
Jaramillo, Thomas F. ;
Norskov, Jens K. ;
Cargnello, Matteo .
CHEMELECTROCHEM, 2020, 7 (07) :1542-1549
[34]   Recent progress towards the electrosynthesis of ammonia from sustainable resources [J].
Shipman, Michael A. ;
Symes, Mark D. .
CATALYSIS TODAY, 2017, 286 :57-68
[35]   Strategies toward Selective Electrochemical Ammonia Synthesis [J].
Singh, Aayush R. ;
Rohr, Brian A. ;
Statt, Michael J. ;
Schwalbe, Jay A. ;
Cargnello, Matteo ;
Norskov, Jens K. .
ACS CATALYSIS, 2019, 9 (09) :8316-8324
[36]   Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process [J].
Soloveichik, Grigorii .
NATURE CATALYSIS, 2019, 2 (05) :377-380
[37]   Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia [J].
Suryanto, Bryan H. R. ;
Du, Hoang-Long ;
Wang, Dabin ;
Chen, Jun ;
Simonov, Alexandr N. ;
MacFarlane, Douglas R. .
NATURE CATALYSIS, 2019, 2 (04) :290-296
[38]   Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity [J].
Tran, Chris ;
Yang, Xiao-Qing ;
Qu, Deyang .
JOURNAL OF POWER SOURCES, 2010, 195 (07) :2057-2063
[39]   LITHIUM-MEDIATED ELECTROCHEMICAL REDUCTION OF HIGH-PRESSURE N2 TO NH3 [J].
TSUNETO, A ;
KUDO, A ;
SAKATA, T .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 367 (1-2) :183-188
[40]   AMMONIA DETERMINATION BASED ON INDOPHENOL FORMATION WITH SODIUM SALICYLATE [J].
VERDOUW, H ;
VANECHTELD, CJA ;
DEKKERS, EMJ .
WATER RESEARCH, 1978, 12 (06) :399-402