List-Decodable Zero-Rate Codes

被引:13
作者
Alon, Noga [1 ,2 ,3 ]
Bukh, Boris [4 ]
Polyanskiy, Yury [5 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Tel Aviv Univ, Sch Math, IL-69978 Tel Aviv, Israel
[3] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[4] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[5] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
List decoding; error correction codes; Hamming space; Euclidean space;
D O I
10.1109/TIT.2018.2868957
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider list decoding in the zero-rate regime for two cases-the binary alphabet and the spherical codes in Euclidean space. Specifically, we study the maximal tau is an element of[0, 1] for which there exists an arrangement of M halls of relative Hamming radius tau in the binary hypercube (of arbitrary dimension) with the property that no point of the latter is covered by L or more of them. As M -> infinity the maximal tau decreases to a well-known critical value tau(L). In this paper, we prove several results on the rate of this convergence. For the binary case, we show that the rate is Theta(M-1) when L is even, thus extending the classical results of Plotkin and Levenshtein for L = 2. For L = 3, the rate is shown to be Theta(M-(2/3)). For the similar question about sherical codes, we prove the rate is Omega(M-1) O(M-(2L/L2-L+2)).
引用
收藏
页码:1657 / 1667
页数:11
相关论文
共 14 条
[1]  
[Anonymous], 1994, ELECTRON J COMB
[2]  
Blachman N. M., 1963, MATHEMATIKA, V10, P84
[3]  
BLINOVSKI V. M., 1986, PROBLEMY PEREDACHI I, V22, P11
[4]   Multiple packing of the Euclidean sphere [J].
Blinovsky, V .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1334-1337
[5]   Generalization of Plotkin bound to the case of multiple packing [J].
Blinovsky, Vladimir .
2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, :2048-2050
[6]  
DANZER L, 1963, P S PURE MATH, V7, P101
[7]  
GRAHAM RL, 1980, WILEY INTERSCIENCE S
[8]   SYSTEMS OF VECTORS IN EUCLIDEAN-SPACE AND AN EXTREMAL PROBLEM FOR POLYNOMIALS [J].
KONYAGIN, SV .
MATHEMATICAL NOTES, 1981, 29 (1-2) :33-40
[9]  
Levenshtein V. I., 1961, Problems Cybern., V5, P123
[10]   Upper Bound on List-Decoding Radius of Binary Codes [J].
Polyanskiy, Yury .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (03) :1119-1128