Continuous wave terahertz receivers with 4.5 THz bandwidth and 112 dB dynamic range

被引:35
作者
Deumer, Milan [1 ]
Breuer, Steffen [1 ]
Kohlhaas, Robert [1 ]
Nellen, Simon [1 ]
Liebermeister, Lars [1 ]
Lauck, Sebastian [1 ]
Schell, Martin [1 ,2 ]
Globisch, Bjoern [1 ,2 ]
机构
[1] Heinrich Hertz Inst Nachrichtentech Berlin GmbH, Fraunhofer Inst Telecommun, HHI, Einsteinufer 37, D-10587 Berlin, Germany
[2] Tech Univ Berlin, Inst Solid State Phys, Hardenbergstr 36, D-10587 Berlin, Germany
关键词
1550; NM; SYSTEM; SPECTROSCOPY; RADIATION;
D O I
10.1364/OE.443098
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present photomixers made of iron doped indium gallium arsenide (InGaAs:Fe) as broadband receivers in optoelectronic continuous wave (cw) terahertz (THz) systems. InGaAs:Fe shows higher resistivity and shorter carrier lifetimes compared to the state-of-the-art low-temperature-grown material. These improved material properties translate into an improved frequency response and lower noise level of the InGaAs:Fe photomixers. We were able to measure a bandwidth of 4.5 THz with a peak dynamic range of 112 dB at 30 mW laser excitation around 1550 nm. To the best of our knowledge, these are record high values for cw THz spectroscopy. Furthermore we achieved an increased dynamic range by up to 10 dB for frequencies above 1 THz compared to state-of-the-art photomixing receivers. These improvements enable faster and more precise spectroscopy with higher bandwidth. In industrial non-destructive testing, the measurement rate may be increased by a factor of ten posing a valuable contribution to inline process monitoring. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:41819 / 41826
页数:8
相关论文
共 33 条
[1]   Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings [J].
Ahmadivand, Arash ;
Gerislioglu, Burak ;
Ahuja, Rajeev ;
Mishra, Yogendra Kumar .
MATERIALS TODAY, 2020, 32 :108-130
[2]  
[Anonymous], 1986, DEEP CTR SEMICONDUCT
[3]   PHOTOMIXING UP TO 3.8-THZ IN LOW-TEMPERATURE-GROWN GAAS [J].
BROWN, ER ;
MCINTOSH, KA ;
NICHOLS, KB ;
DENNIS, CL .
APPLIED PHYSICS LETTERS, 1995, 66 (03) :285-287
[4]   Review of terahertz photoconductive antenna technology [J].
Burford, Nathan M. ;
El-Shenawee, Magda O. .
OPTICAL ENGINEERING, 2017, 56 (01)
[5]   2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers [J].
Deninger, Anselm J. ;
Roggenbuck, A. ;
Schindler, S. ;
Preu, S. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2015, 36 (03) :269-277
[6]   Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor [J].
Globisch, B. ;
Dietz, R. J. B. ;
Kohlhaas, R. B. ;
Goebel, T. ;
Schell, M. ;
Alcer, D. ;
Semtsiv, M. ;
Masselink, W. T. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (05)
[7]   Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs [J].
Globisch, B. ;
Dietz, R. J. B. ;
Stanze, D. ;
Goebel, T. ;
Schell, M. .
APPLIED PHYSICS LETTERS, 2014, 104 (17)
[8]   Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth [J].
Goebel, Thorsten ;
Stanze, Dennis ;
Globisch, Bjoern ;
Dietz, Roman J. B. ;
Roehle, Helmut ;
Schell, Martin .
OPTICS LETTERS, 2013, 38 (20) :4197-4199
[9]   Analysis of photomixer receivers for continuous-wave terahertz radiation [J].
Gregory, I. S. ;
Evans, M. J. ;
Page, H. ;
Malik, S. ;
Farrer, I. ;
Beere, H. E. .
APPLIED PHYSICS LETTERS, 2007, 91 (15)
[10]   IDENTIFICATION OF THE FE ACCEPTOR LEVEL IN GA0.47IN0.53AS [J].
GUILLOT, G ;
BREMOND, G ;
BENYATTOU, T ;
DUCROQUET, F ;
WIRTH, B ;
COLOMBET, M ;
LOUATI, A ;
BENCHERIFA, A .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1990, 5 (05) :391-394