A DATA-DRIVEN APPROACH TO THE EVALUATION OF ASPHALT PAVEMENT STRUCTURES USING FALLING WEIGHT DEFLECTOMETER

被引:8
作者
Liu, Hanjie [1 ]
Cao, Jinde [1 ,2 ]
Huang, Wei [3 ]
Shi, Xinli [4 ]
Zhou, Xingye [5 ]
机构
[1] Southeast Univ, Jiangsu Prov Key Lab Networked Collect Intelligen, Sch Math, Nanjing 210096, Peoples R China
[2] Yonsei Univ, Yonsei Frontier Lab, Seoul 03722, South Korea
[3] Southeast Univ, Intelligent Transportat Syst Res Ctr, Nanjing 210096, Peoples R China
[4] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 210096, Peoples R China
[5] Minist Transport, Res Inst Highway, Beijing 100088, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2022年 / 15卷 / 11期
基金
中国国家自然科学基金;
关键词
Data-driven; unsupervised machine learning; pavement design; RIOHTrack; FWD; COMMUNITY STRUCTURE; TEMPERATURE; CONNECTIVITY; PERFORMANCE;
D O I
10.3934/dcdss.2022139
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The evaluation of asphalt pavement structures has been a critical challenge in the field due to the practical limitations in methodology. In this paper, we propose a data-driven framework to evaluate structural performance of nineteen widely used asphalt structures in the Research Institute of Highway Ministry of Transport track (RIOHTrack). Specifically, we utilize the unsupervised machine learning method to delineate the similar and disparate performance among tested structures based on four years of falling weight deflectometer (FWD) experiments. Next, the structural performance is investigated on the temporal scale and the dynamic performance variations are captured over the course of the testing. Finally, experimental results are discussed and we provide essential evidence to aid future asphalt pavement design and construction.
引用
收藏
页码:3223 / 3241
页数:19
相关论文
共 50 条
[31]   GraphDGM: A Generative Data-Driven Design Approach for Frame and Lattice Structures [J].
Yang, Zhenling ;
Guo, Yilin ;
Sun, Zhi ;
Elkhodary, Khalil I. ;
Feng, Fuyong ;
Kang, Zhong .
Journal of Mechanical Design, 2025, 147 (10)
[32]   Evaluation of Data-Driven Sustainability Potential at SMEs Using an Altered Ecocanvas Model [J].
Balint, Levente Peter ;
Varallyai, Laszlo ;
Botos, Szilvia .
ECONOMIES, 2025, 13 (02)
[33]   Data-Driven MoE: A Data-Driven Approach to Construct MoE by a Single LLM [J].
Teng, Zeyu ;
Yan, Zhiwei ;
Song, Yong ;
Ye, Xiaozhou ;
Ouyang, Ye .
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14878 :352-363
[34]   Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach [J].
Yang Hui ;
Xuesong Mei ;
Gedong Jiang ;
Fei Zhao ;
Ziwei Ma ;
Tao Tao .
Journal of Intelligent Manufacturing, 2022, 33 :753-769
[35]   Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach [J].
Hui, Yang ;
Mei, Xuesong ;
Jiang, Gedong ;
Zhao, Fei ;
Ma, Ziwei ;
Tao, Tao .
JOURNAL OF INTELLIGENT MANUFACTURING, 2022, 33 (03) :753-769
[36]   A data-driven approach to modeling physical using wearable sensors [J].
Maman, Zahra Sedighi ;
Yazdi, Mohammad Ali Alamdar ;
Cavuoto, Lora A. ;
Megahed, Fadel M. .
APPLIED ERGONOMICS, 2017, 65 :515-529
[37]   Analysis of a mathematical model for malaria using data-driven approach [J].
Rajnarayanan, Adithya ;
Kumar, Manoj ;
Tridane, Abdessamad .
SCIENTIFIC REPORTS, 2025, 15 (01)
[38]   Data-driven design approach to hierarchical hybrid structures with multiple lattice configurations [J].
Liu, Zhen ;
Xia, Liang ;
Xia, Qi ;
Shi, Tielin .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (06) :2227-2235
[39]   Data-driven design approach to hierarchical hybrid structures with multiple lattice configurations [J].
Zhen Liu ;
Liang Xia ;
Qi Xia ;
Tielin Shi .
Structural and Multidisciplinary Optimization, 2020, 61 :2227-2235
[40]   In-place evaluation of a limestone base course modulus, using a van-integrated falling weight deflectometer (FWD) and the GeoGauge (SSG) [J].
Quinta-Ferreira, Mrio ;
Fung, Eduardo ;
Andrade, Pedro Santarem ;
Branco, Fernando Castelo .
ROAD MATERIALS AND PAVEMENT DESIGN, 2012, 13 (04) :817-831