Investigation of microcombustion reforming of ethane/air and micro-Tubular Solid Oxide Fuel Cells

被引:20
作者
Milcarek, Ryan J. [1 ]
Nakamura, Hisashi [2 ]
Tezuka, Takuya [2 ]
Maruta, Kaoru [2 ]
Ahn, Jeongmin [3 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, 501 E Tyler Mall, Tempe, AZ 85287 USA
[2] Tohoku Univ, Inst Fluid Sci, Aoba Ku, Sendai, Miyagi 9808577, Japan
[3] Syracuse Univ, Dept Mech & Aerosp Engn, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
Flame-assisted fuel cell (FFC); Solid oxide fuel cell (SOFC); Micro flow reactor; Microcombustion; HYDROGEN-PRODUCTION; FLOW REACTOR; HYDROCARBON FUELS; PARTIAL OXIDATION; RICH-COMBUSTION; FLAME; METHANE; TEMPERATURE; POWER; SOOT;
D O I
10.1016/j.jpowsour.2019.227606
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal partial oxidation, or fuel-rich combustion, is a non-catalytic option for reforming hydrocarbons to synthesis gas for direct conversion in micro-Tubular Solid Oxide Fuel Cells (SOFCs). A number of studies have demonstrated the potential of using heat recirculation to sustain combustion at high equivalence ratios, where the concentration of synthesis gas can be maximized, but few have connected the fuel-rich combustion reforming to SOFCs to understand how the reforming effects the electrochemical reactions. This study investigates microcombustion of ethane/air at equivalence ratios from 1.0 to 5.0, flow rates of 10-250 mL min(-1) and maximum wall temperatures of 800 degrees C, 900 degrees C and 1000 degrees C. The weak flame, flame with repetitive extinction and ignition (FREI) and normal flame regimes are characterized along with the exhaust composition at each condition. Micro-Tubular SOFCs (mT-SOFCs) open circuit voltage, polarization and power density are found to be effected by FREI. High fuel utilization of similar to 64% is achieved. Long term testing and comparison with a H-2 baseline is reported.
引用
收藏
页数:10
相关论文
共 60 条
[21]   Progress in Microtubular Solid Oxide Fuel Cells [J].
Kendall, Kevin .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2010, 7 (01) :1-9
[22]  
Kendall Kevin., 2016, HIGH TEMPERATURE SOL
[23]   Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions [J].
Kennedy, LA ;
Bingue, JP ;
Saveliev, AV ;
Fridman, AA ;
Foutko, SI .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 (01) :1431-1438
[24]  
Kluger M., 2009, FUEL CELLS B, V2009, P5, DOI [10.1016/S1464-2859(09)70317-7, DOI 10.1016/S1464-2859(09)70317-]
[25]   A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane [J].
Kronemayer, Helmut ;
Barzan, Daniel ;
Horiuchi, Michio ;
Suganuma, Shigeaki ;
Tokutake, Yasue ;
Schulz, Christof ;
Bessler, Wolfgang G. .
JOURNAL OF POWER SOURCES, 2007, 166 (01) :120-126
[26]   Superadiabatic flame for production of hydrogen rich gas from methane [J].
Lee, Pil Hyong ;
Hwang, Sang Soon .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (27) :11801-11810
[27]   Experimental study of hydrogen production and soot particulate matter emissions from methane rich-combustion in inert porous media [J].
Loukou, Alexandra ;
Frenzel, Isabel ;
Klein, Jens ;
Trimis, Dimosthenis .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (21) :16686-16696
[28]   Enhanced performance of an anode-supported YSZ thin electrolyte fuel cell with a laser-deposited Sm0.2Ce0.8O1.9 interlayer [J].
Lu, Zigui ;
Zhou, Xiao-dong ;
Fisher, Daniel ;
Templeton, Jared ;
Stevenson, Jeffry ;
Wu, Naijuan ;
Ignatiev, Alex .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) :179-182
[29]   Characteristics of combustion in a narrow channel with a temperature gradient [J].
Maruta, K ;
Kataoka, T ;
Kim, NI ;
Minaev, S ;
Fursenko, R .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 :2429-2436
[30]   Electrochemical oxidation of H2 and CO in a H2-H2O-CO-CO2 system at the interface of a Ni-YSZ cermet electrode and YSZ electrolyte [J].
Matsuzaki, Y ;
Yasuda, I .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (05) :1630-1635