Automatic image annotation with relevance feedback and latent semantic analysis

被引:0
作者
Morrison, Donn [1 ]
Marchand-Maillet, Stephane [1 ]
Bruno, Eric [1 ]
机构
[1] Univ Geneva, Ctr Univ Informat, Geneva, Switzerland
来源
ADAPTIVE MULTIMEDIAL RETRIEVAL: RETRIEVAL, USER, AND SEMANTICS | 2008年 / 4918卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The goal of this paper is to study the image-concept relationship as it pertains to image annotation. We demonstrate how automatic annotation of images can be implemented on partially annotated databases by learning image-concept relationships from positive examples via inter-query learning. Latent semantic analysis (LSA), a method originally designed for text retrieval, is applied to an image/session matrix where relevance feedback examples are collected from a large number of artificial queries (sessions). Singular value decomposition (SVD) is exploited during LSA to propagate image annotations using only relevance feedback information. We will show how SVD can be used to filter a noisy image/session matrix and reconstruct missing values.
引用
收藏
页码:71 / 84
页数:14
相关论文
共 26 条
[1]   Matching words and pictures [J].
Barnard, K ;
Duygulu, P ;
Forsyth, D ;
de Freitas, N ;
Blei, DM ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (06) :1107-1135
[2]  
Blei D., 2003, P 26 ANN INT ACM SIG, P127, DOI DOI 10.1145/860435.860460
[3]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[4]  
CORD M, 2006, IEEE INT C IM PROC
[5]  
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
[6]  
2-9
[7]  
FOURNIER J, 2002, LONG TERM SIMILARITY
[8]   Using one-class and two-class SVMs for multiclass image annotation [J].
Goh, KS ;
Chang, EY ;
Li, BT .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (10) :1333-1346
[9]  
GONDRA I, 2004, P INT C INF TECHN CO
[10]  
GRIRA N, 2005, MIR 2005, P9