Mass-transfer instability of ground-states for Hamiltonian Schrodinger systems

被引:1
|
作者
Correia, Simao [1 ]
Oliveira, Filipe [2 ,3 ]
Silva, Jorge D. [1 ]
机构
[1] Univ Lisbon, Ctr Math Anal Geometry & Dynam Syst, Inst Super Tecn, Dept Math, Av Rovisco Pais, P-1049001 Lisbon, Portugal
[2] Univ Lisbon, Math Dept, ISEG, Rua Quelhas 6, P-1200781 Lisbon, Portugal
[3] Univ Lisbon, CEMAPRE, ISEG, Rua Quelhas 6, P-1200781 Lisbon, Portugal
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 148卷 / 02期
关键词
SOLITARY WAVES; STABILITY THEORY; EQUATIONS; SOLITONS; BRIGHT;
D O I
10.1007/s11854-022-0240-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study generic semilinear Schrodinger systems which may be written in Hamiltonian form. In the presence of a single gauge invariance, the components of a solution may exchange mass between them while preserving the total mass. We exploit this feature to unravel new orbital instability results for ground-states. More precisely, we first derive a general instability criterion and then apply it to some well-known models arising in several physical contexts. In particular, this mass-transfer instability allows us to exhibit L-2-subcritical unstable ground-states.
引用
收藏
页码:681 / 710
页数:30
相关论文
共 50 条
  • [1] Mass-transfer instability of ground-states for Hamiltonian Schrödinger systems
    Simão Correia
    Filipe Oliveira
    Jorge D. Silva
    Journal d'Analyse Mathématique, 2022, 148 : 681 - 710
  • [2] Classification of Ground-states of a coupled Schrodinger system
    Liu, Chuangye
    Wang, Zhi-Qiang
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (02):
  • [3] Amplitude instability in the mass-transfer theory for Yukawa systems
    Lisina, I. I.
    Vaulina, O. S.
    Lisin, E. A.
    PHYSICS OF PLASMAS, 2017, 24 (11)
  • [4] GROUND-STATES OF QUANTUM SPIN SYSTEMS
    BRATTELI, O
    KISHIMOTO, A
    ROBINSON, DW
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 64 (01) : 41 - 48
  • [5] MODULATIONAL STABILITY OF GROUND-STATES OF NONLINEAR SCHRODINGER-EQUATIONS
    WEINSTEIN, MI
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (03) : 472 - 491
  • [6] A COMPLETE CLASSIFICATION OF GROUND-STATES FOR A COUPLED NONLINEAR SCHRODINGER SYSTEM
    Liu, Chuangye
    Wang, Zhi-Qiang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (01) : 115 - 130
  • [7] ON THE INSTABILITY OF GROUND-STATES FOR A DAVEY-STEWARTSON SYSTEM
    CIPOLATTI, R
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1993, 58 (01): : 85 - 104
  • [8] LOCALIZED VERSUS DELOCALIZED GROUND-STATES OF THE SEMICLASSICAL HOLSTEIN HAMILTONIAN
    CRUZEIROHANSSON, L
    KENKRE, VM
    PHYSICS LETTERS A, 1994, 190 (01) : 59 - 64
  • [9] DEGENERATE AND NON-DEGENERATE GROUND-STATES FOR SCHRODINGER OPERATORS
    FARIS, W
    SIMON, B
    DUKE MATHEMATICAL JOURNAL, 1975, 42 (03) : 559 - 567
  • [10] INCOMMENSURATE GROUND-STATES OF A COMMENSURATE PEIERLS-HUBBARD HAMILTONIAN
    BATISTIC, I
    GAMMEL, JT
    BISHOP, AR
    PHYSICAL REVIEW B, 1991, 44 (24): : 13228 - 13236