Scaling in the Diffusion Limited Aggregation Model

被引:15
作者
Menshutin, Anton [1 ,2 ]
机构
[1] Landau Inst Theoret Phys, Chernogolovka 142432, Russia
[2] Sci Ctr Chernogolovka, Chernogolovka 142432, Russia
关键词
ACTIVE ZONE; UNIVERSALITY; DLA;
D O I
10.1103/PhysRevLett.108.015501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a self-consistent picture of diffusion limited aggregation (DLA) growth based on the assumption that the probability density P(r, N) for the next particle to be attached within the distance r to the center of the cluster is expressible in the scale-invariant form P[r/R(dep)(N)]. It follows from this assumption that there is no multiscaling issue in DLA and there is only a single fractal dimension D for all length scales. We check our assumption self-consistently by calculating the particle-density distribution with a measured P(r/R(dep)) function on an ensemble with 1000 clusters of 5 x 10(7) particles each. We also show that a nontrivial multiscaling function D(x) can be obtained only when small clusters (N < 10 000) are used to calculate D(x). Hence, multiscaling is a finite-size effect and is not intrinsic to DLA.
引用
收藏
页数:5
相关论文
共 18 条
[1]   MULTISCALING IN DIFFUSION-LIMITED AGGREGATION [J].
AMITRANO, C ;
CONIGLIO, A ;
MEAKIN, P ;
ZANNETTI, M .
PHYSICAL REVIEW B, 1991, 44 (10) :4974-4977
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]   Off-lattice noise reduction and the ultimate scaling of diffusion-limited aggregation in two dimensions [J].
Ball, RC ;
Bowler, NE ;
Sander, LM ;
Somfai, E .
PHYSICAL REVIEW E, 2002, 66 (02) :1-026109
[4]   NOVEL DYNAMIC SCALING IN KINETIC GROWTH PHENOMENA [J].
CONIGLIO, A ;
ZANNETTI, M .
PHYSICA A, 1990, 163 (01) :325-333
[5]   MULTISCALING AND MULTIFRACTALITY [J].
CONIGLIO, A ;
ZANNETTI, M .
PHYSICA D, 1989, 38 (1-3) :37-40
[6]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[7]   FINITE-SIZE EFFECTS IN DIFFUSION-LIMITED AGGREGATION [J].
LAM, CH .
PHYSICAL REVIEW E, 1995, 52 (03) :2841-2847
[8]   The universality class of diffusion-limited aggregation and viscous-limited aggregation [J].
Mathiesen, J. ;
Procaccia, I. ;
Swinney, H. L. ;
Thrasher, M. .
EUROPHYSICS LETTERS, 2006, 76 (02) :257-263
[9]   Morphological diagram of diffusion driven aggregate growth in plane: Competition of anisotropy and adhesion [J].
Menshutin, A. Yu. ;
Shchur, L. N. .
COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (09) :1819-1823
[10]   Test of multiscaling in a diffusion-limited-aggregation model using an off-lattice killing-free algorithm [J].
Menshutin, AY ;
Shchur, LN .
PHYSICAL REVIEW E, 2006, 73 (01)